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Abstract. The focus of the contribution is on a detailed discussion of the 2D formulation in contact which

can be viewed either as a reduction of the general 3D case to a special cylindrical geometry, or as the contact

of 2D bodies bounded by plane curves. In addition, typical frictional characteristics, such as the yield surface

and the update of the sliding displacements allow a geometrical interpretation in the chosen coordinate system

on the contact surface.

1 Geometry and kinematics of contact

In the literature various contact descriptions adapted for an effective finite ele-

ment implementation are available, which can be characterized by the following:
from 2D to 3D formulations, from non-frictional to frictional contact. One of

the first contributions on finite element solutions of 2D frictional contact prob-
lems based on an elasto-plastic analogy has been made by Wriggers et. al.
[1]. General overviews over contact conditions and contact algorithms which

are nowadays used in practice, are covered by the books of Wriggers [2] and
Laursen [3]. The covariant description, see Konyukhov and Schweizerhof [4]

for the frictionless case and [5] for the frictional contact, has been found as a
universal penalty based approach for contact with various approximation of the

surfaces. In the current contribution, we will show the unity of 2D and 3D
formulations, where the 2D case can be derived, from one hand, as a simplified
case of the particular 3D geometry of contact surfaces and, from the other hand,

can be constructed separately based on the differential geometry of 2D plane
curves.

Considering a special contact case – contact between two cylindrical infinite
bodies with plane strain deformations, see Fig. 1, leads to the definition of a 2D

contact. In this case a generatrix GH of the first cylindrical body is a contact
line and corresponds to a contact line G’H’ which is also a generatrix but of the

second cylindrical body. Thus, 3D contact which can be seen as an interaction
between two surfaces is reduced to an interaction between two boundary curves
in the 2D case. One of both boundary curves resp. surfaces is chosen as the

master contact curve resp. surface. A coordinate system is considered on the
boundary, either for a surface in 3D or for a curve in 2D.

On the plane we define a curvilinear coordinate system associated with the
curve by introducing two principal vectors as a basis: the tangent vector ρξ =

1



Figure 1: Two dimensional contact as a special case of three dimensional contact

∂ρ

∂ξ
and the unit normal vector ν. Then a slave contact point S is found as

rs(ξ, ζ) = ρ(ξ) + ζν(ξ). (1)

The normal unit vector ν in the case of arbitrary Lagrangian parameterizations
with ξ can be defined via a cross product in a Cartesian coordinate system as:

ρξ =
∂ρ

∂ξ
; =⇒ ν =

[k× ρξ]√
ρξ · ρξ

, (2)

where k is the third unit vector in this Cartesian coordinate system. According
to this definition the traction vector Rs is defined via the contravariant basis

vectors:
Rs = Tρ

1 + Nρ
2 = T

ρξ

(ρξ · ρξ)
+ Nν. (3)

The decomposition of the traction in eqn. (3) leads to the following contact
integral

δWc =

∫

l

(Nδζ + Tδξ)dl. (4)

A closer look reveals that the contact integral (4) contains the work of the

contact tractions T and N defined on the master contact curve and is computed
along the slave curve l ≡ ls.
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2 Regularization of the contact tractions

For the normal traction N , the following regularized equation in the closed form
is taken

N = εNζ, if ζ ≤ 0, (5)

where εN is a penalty parameter for the normal interaction.

As a reasonable equation for the regularization of the tangent traction T

we choose a proportional relation between the full time derivative
dT

dt
and the

relative velocity vector expressed in covariant form on the tangent line ζ = 0:

D1T

dt
ρ

1 = −εT ξ̇ρξ. (6)

Expressing the covariant derivative in eqn. (6) the following equation is obtained

dT

dt
= −εT (ρξ · ρξ)ξ̇ +

ρξξ · ρξ

(ρξ · ρξ)
ξ̇ − h11

a11
ζ̇ , (7)

where εT is a penalty parameter for the tangential interaction, a11 and h11 are

components of the metric tensor resp. of the curvature tensor for the cylindrical
surface. If a path length s = ξ is used for parameterization, then eqn. (7) is

transformed as
dT

dt
= −εT ṡ − κζ̇, (8)

where κ is a curvature of the master contact plane curve.

3 Linearization for a Newton type solution scheme

The derivation of the contact matrices can be performed either according to

the cylindrical geometry, or according to the geometry of the plane curves. The
latter provides a straightforward geometrical explanation of each part of the

contact matrix and can be used for the judgment of their necessity within the
solution process. Thus, the linearization of the normal part in eqn. (4) given

by the following integral:

δWN
c =

∫

l

Nδζdl, (9)

leads to the following.

D(δWN
c ) =

∫

l

(

dN

dt
δζ + N

dδζ

dt

)

dl =

=

∫

l

εN(δrs − δρ) · (ν ⊗ ν)(vs − v)dl− (10)

3



−
∫

l

εNζ

(

δτ · (ν ⊗ τ )(vs − v) + (δrs − δρ) · (τ ⊗ ν)
∂τ

∂t

)

dl− (10 a)

−
∫

l

εNζκ(δrs − δρ) · (τ ⊗ τ )(vs − v)dl. (10 b)

The form written via the path length allows a simple geometrical interpretation

of each part in eqn. (10) and even allows to establish situations where some
of the parts are zero. The first part eqn. (10) is called main part and defines

the constitutive relation for normal contact conditions. The second part eqn.
(10 a) is called rotational part and defines the geometrical stiffness due to the

rotation of the tangent vector of the master curve. It disappears when a master
segment is moving in parallel, because only in this case the derivative of a unit
vector τ becomes zero. The third part eqn. (10 b) is called curvature part.

This part disappears when the curvature κ of a master segment is zero, i.e. in
the case of linear approximations of the master segment.

The structure of the tangential part for the sticking case is as follows:

Dv(δW
T
c ) =

∫

l

(

dT

dt
δξ + T

dδξ

dt

)

dl =

−
∫

l

εT (δrs − δρ) · (τ ⊗ τ )(vs − v)dl (11)

−
∫

l

T

[

(δrs − δρ) · (τ ⊗ τ )
∂τ

∂t
+ δτ · (τ ⊗ τ ) (vs − v)

]

dl (11 a)

+

∫

l

κ(δrs − δρ) · (τ ⊗ ν + ν ⊗ τ ) (vs − v)dl. (11 b)

Here T is a trial tangent traction computed from the discrete evolution equa-

tion (6) at each load step, e.g. under the assumption that the slave point obeys
the elastic deformation law.

One can see that the symmetry is preserved for the full sticking case for any
curvilinear geometry of the contact bodies.

If sliding is detected, i.e. if ‖T‖ > µ|N |, then the sliding force is computed

according to Coulomb’s friction law within the return-mapping scheme, see [2]
and [3]. We also keep a covariant form:

T sl = µ|N | Ttr

‖Ttr‖
= µ|N | (ρξ · ρξ)

1/2sgn(Ttr). (12)

The linearized contact integral for the tangential part in the case of

sliding has the same geometrical structure, but contains non-symmetric parts
due to the non-associativity of the Coulomb friction law.
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Details for the implementation of the linear contact element as well as for

the computation according to the return-mapping scheme can be found in
Konyukhov and Schweizerhof [7].

4 Treatment of special cases

Some special cases can appear when a direct application of the return-mapping
scheme can lead to improper results. The first problem is arising when the

applied load is not simply modified proportionally. In this situation a trial load
can not be computed only via the evolution equation, because the attraction

point ξ0 must be updated. Thus we have to extend the algorithm as is shown
in the following. The second problem is arising when the projection point is

crossing an element boundary during the incremental loading. In this case, the
computation according to the incremental evolution equation will produce a

jump, because the convective coordinate ξ belongs to different elements.

4.1 Update of the sliding displacements in the case of reversible loading

A geometrical interpretation of the trial step in the return-mapping scheme

leads to the definition of the elastic region with an attraction point ξ0

|T (n)
tr | < µ|N (n)|√a11 =⇒ εT |ξ(n) − ξ0| < µ|N (n)| (13)

If a point ξ(n+1) appears to be outside of the domain at load step (n + 1), then

its only admissible position is on the boundary of the domain. A sliding force is
applied then at the contact point. As long as we have a motion of the contact
point only in one direction the sign function for the sliding force sgn(T

(n+1)
tr ) =

sgn(∆ξ(n+1)) does not change and the computation will be correct. However,
when a reversible load is applied and it forces the contact point to move forward

or backward, the attraction point ξ0 must be updated in order to define the sign
function for the sliding force correctly. This update can be defined geometrically

from Fig. 2:

|∆ξ(n+1)| = |∆ξ(n+1)| − µ|N (n)|
εT

. (14)

Thus, computation of the trial force at the next load step (n + 1) has to
be made in accordance to the update procedure, see more in Konyukhov and
Schweizerhof [7].
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Figure 2: Coulomb friction. Updating of sliding displacements in convective coordinates. Motion of
friction cone and center of attraction.

4.2 Crossing an element boundary – continuous integration scheme

Consider two adjacent elements AB and BC, see Fig. 3. If we follow the
computation of the trial force according to the formula expressed in convective

coordinates as
T

(n+1)
tr = −εTa11(ξ

(n+1) − ξ(n)), (15)

then this leads to a jump in the contact tractions. The maximum of the jump

is computed as

Tjump = −εTa11

(

lim
ξ→−1+0

(ξ)ξ∈BC − lim
ξ→+1−0

(ξ)ξ∈AB

)

= 2εTa11. (16)

This jump appears only due to the different approximation of the adjacent
elements. In order to overcome this, we can compute the force in geometrical

form. Following this procedure the incremental coordinate ∆ξ can be expressed
as

∆ξ =

(

ρ(ξ(n+1))ξ∈BC −
(

ρ(ξ(n)) + ∆u(ξ(n))
)

ξ∈AB

)

· ρ(n+1)
ξ

,
a

(n+1)
11 (17)

where ∆u is an incremental displacement vector. The evolution equation be-
comes then

T
(n+1)
tr = T (n) − εTa

(n+1)
11 ∆ξ. (18)

In the 2D case, the computation can be made via the length parameter s leading
to the continuous scheme as well, see Wriggers [2].

5 Numerical examples

5.1 Sliding of a block. Linear approximation of the contact surfaces. Reversible

loading process.

We consider the sliding of an elastic block on the rigid base loaded with hor-
izontally prescribed reversible displacements, see Fig. 4(a). The geometrical
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Figure 3: Crossing an element boundary within a load increment. Typical case for the continuous
integration scheme.

and mechanical parameters are elasticity modulus E = 2.1 · 104, Poisson ratio

ν = 0.3, length a = 20, height b = 5, Coulomb friction coefficient µ = 0.3 . The
penalty parameters are chosen as εN = εT = 2.1 · 106. The main point is to

show the update procedure for sliding displacements. The loading is applied as
prescribed displacements at the top side of the deformable block. For contact

the ”node-to-segment”approach is taken. The hysteresis curve representing the
computed horizontal displacement at point D vs. the applied displacement at
point C is given in Fig. 4(b).
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(a) Plane deformation of a block. Applied dis-
placement loading at top of the block.
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(b) Hysteresis curve. Observed horizontal displace-
ment at point D vs. applied horizontal displacement
at point C.

5.2 Drawing of an elastic strip into a channel with sharp corners.

A particular example in which application of the continuous integration is abso-

lutely necessary is a deep drawing of an elastic strip into a channel with sharp
corners, see Fig. 4. The crucial point during the analysis is the sliding of a

sharp corner C over the element boundaries 1, 2, 3. A load-displacement curve
computed for the loading point is chosen as the representative parameter to
compare various contact approaches. We obtain, see also [7], that the appli-

cation of the ”segment-to-segment” approach, as described in [6], without the
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continuous integration scheme allows to compute the force-displacement curve

only for non-frictional cases. For frictional cases a more careful transport of the
history variables is necessary as it is suggested here.

Figure 4: Drawing of an elastic strip into a channel with sharp corners.

6 Conclusions

In this contribution a convective description is reconsidered for the 2D quasi-
statical frictional contact problem. Special attention is paid to the derivation

of the necessary equations either as a reduction of the known 3D covariant
formulation, or directly from the special 2D cylindrical geometry of the contact
surfaces. The algorithmic linearization in the covariant form allows to obtain the

tangent matrices before the linearization process. Thus, an implementation can
be easily carried without providing any special attention to the approximation

of the contact surfaces. Further it is shown that special algorithmic techniques
have to be taken to provide robust answerers for load reversion and for the

crossing of element boundaries.
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