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1 Abstract

The standard implementation of the classical Coulomb friction model together

with the Newton iterative method for the finite element method leads to non-
symmetric tangent matrices for sliding zones of contact surfaces. This fact

is known in literature as consequence of the non-associativity of the friction
law. Considering anisotropic models for friction, especially including coupling

of adhesion and friction, leads to additional non-symmetries due to anisotropy.
Since, non-symmetry of matrices is a non-desirable feature of most engineering
problems, various proposals for symmetrization are known in computational

mechanics. A further suggestion is made in this contribution. The covariant
approach for both isotropic and anisotropic frictional contact problems leads to

a very simple structure of the tangent matrices. This allows to obtain very ro-
bust tangent matrices within the symmetrized Augmented Lagrangian method.

In the current contribution, the nested Uzawa algorithm is applied for sym-
metrization within the Augmented Lagrangian approach for an anisotropic fric-

tion model including adhesion and friction. The numerical examples show the
good convergence behavior for various problems such as small and large sliding
problems.

2 Introduction

The penalty method for frictional contact problems [1], [2] currently is among

the most popular schemes in finite element packages, leads to the satisfaction of
the contact constraints, such as non-penetration and sticking conditions, only

within a certain tolerance. This tolerance is defined by the penalty parameters
for both normal and tangential direction. As is known, the classical method

of Lagrangian multipliers leads to an exact satisfaction of contact constraints,
however, one should take care of the number of multipliers due to the often

overstiff behavior of contact interfaces, see e.g. in [3]. Additional degrees of
freedoms for the contact tractions are often mentioned among the disadvan-
tages of this method. Recently, various combinations of the Mortar method
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have been developed in e.g. [4], [5], [6] allowing to overcome overstiff behavior

especially in the case where contact tractions are computed point-wise at in-
tegration points. In addition, good results for the patch-test have been shown

also in [3] exploiting the, so-called, segment-to-segment approach, coinciding
with the Mortar method with penalty descriptions of the contact traction. So-

called dual Lagrange multipliers have been developed for non-frictional contact
in Wohlmuth [7] allowing to condense degrees of freedom for contact traction.
Using this approach, the frictional constraints should be carefully treated as a

sequence of the Tresca type friction model, see [8]. This approach is similar to
the Augmented Lagrangian approach allowing to satisfy the contact constraints

for non-penetration and sticking within the nested algorithm. The method is
described theoretically in Bertsekas [9] and Fortin and Glowinski [10]. Pietrzak

and Curnier [11] developed the Augmented Lagrangian approach for frictional
contact including the corresponding saddle point functional. Laursen and Simo
[12] proposed a symmetrization procedure based on the nested Uzawa algorithm.

This approach is based on symmetrization of the corresponding tangent matri-
ces for the solution of the equilibrium equations, while the contact constraints

have been still iteratively satisfied within the external loop with a specified
tolerance.

In the current contribution, we will describe the symmetric Augmented La-
grangian method for the coupled anisotropic contact model including anisotropy

for friction and adhesion as developed in Konyukhov and Schweizerhof [13], [14].
The geometrical structure of the corresponding tangent matrices allows us to
construct very simple symmetric tangent matrices for the anisotropic case. The

isotropic case can then be defined as a reduction of the anisotropic case. Good
convergence rates are illustrated in the numerical examples.

3 Covariant description of the coupled anisotropic friction model

We shortly present here the main details of the coupled interface contact model

including anisotropy for adhesion and friction and refer to [13], [14] for further
details and corresponding derivations.

At the beginning, a local surface coordinate system is introduced as

rs(ξ
1, ξ2, ξ3) = ρ(ξ1, ξ2) + nξ3, (1)

where ξ1, ξ2 are two convective coordinates and responsible for the tangential

contact interaction. The third coordinate ξ3 is the value of the penetration and
is used to define the properties of the normal interaction

ξ3 = (rs − ρ) · n. (2)
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The vector of contact tractions R is defined as a covariant vector and, there-
fore, is expressed via the contravariant basis vectors ρi and n in the coordinate

system (1) as sum of the tangential and normal components

R = T + N = Tiρ
i + Nn. (3)

For the generalization into anisotropy for adhesion, the tangential traction
vector Tiρ

i and the normal traction vector Nn are assumed to be decoupled.

Therefore, the generalized constitutive equations for tangential tractions are
taken in rate form as

dT

dt
= B(vs − v), (4)

where B is the anisotropic adhesion tensor. The covariant differentiation oper-
ations are involved throughout whenever the rate form is given.

The constitutive equation for normal traction is given in closed form and can
be viewed as a simple penalty regularization procedure for this normal traction

N

N = εNξ3, (5)

where εN is a parameter of normal compliance, or a penalty parameter.

The anisotropy for friction is chosen as a model of Coulomb type involving
proportionality of the frictional force to the normal traction N . The corre-

sponding yield function is written as

Φ =
√

f ijTiTj − |N | =
√

T · FT− |N |, (6)

where F = f ijρiρj is the anisotropic friction tensor.

3.1 Incremental formulation of the coupled anisotropic model

Though, initially the model is formulated in the continuous rate form, it has

been transformed into incremental form for the final computational model via
the application of the backward Euler scheme.

i) The full displacement vector ∆ξ = ξ(n+1) − ξ(n) is decomposed additively
into an elastic increment ∆ξel and into a sliding increment ∆ξsl:

∆ξ = ∆ξel + ∆ξsl, (7)

where both vectors are defined in the surface metrics, namely,

∆ξ := ∆ξiρi = (ξi
(n+1) − ξi

(n))ρi. (8)
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ii) The trial elastic, or adhesion force Ttr
(n+1) is computed via the incremental

evolution equations:

Ttr
(n+1) −T(n) = B(n+1)(ξel

(n+1) − ξel
(n)). (9)

iii) The final result if the tangential traction T is the elastic one (belongs to

the adhesion region), or the plastic one if provided by the yield condition
of the Coulomb type in each load step becomes:

Φtr : =
√

Ttr
(n+1) · F(n+1)Ttr

(n+1) − |N(n+1)|

=
√

f ijT tr
i (n+1)T

tr
j (n+1) − |N(n+1)|, (10)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the maximum of

the energy dissipation function given in the incremental form.

iv) All contact parameters such as sliding traction and sliding distance should

be derived via the principle of the maximum dissipation

D(n+1) := ∆ξsl · Tsl
(n+1) = ∆ξi

slT
sl
i (n+1), D(n+1) −→ max . (11)

Using the necessary optimization conditions for the functional D(n+1) together

with the Kuhn-Tucker conditions from iii) the closed form for the sliding force
Tsl is obtained as:

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (12)

4 Linearization process and structure of matrices

Since the frictional problem is nonlinear, an iterative solution based on a Newton
scheme should be applied. The important part of the implementation is then a
consistent tangent matrix which differs for sticking and sliding according to the

return-mapping scheme. We present here the results with particular focus on
the structure of the matrices especially their symmetry. According to numerical

experiences reported in [15], [16]. we will also exclude the curvature parts of
the matrices.
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4.1 Linearization of the normal part δW N

c

We denote D(f) as a linearization operator acting on a functional f in the

covariant form. Thus, linearization of the virtual work of the contact normal
traction N is given as:

D(δWN
c ) = D(

∫

s

Nδξ3ds) = −
∫

s

εN(δrs − δρ) · (n⊗ n)(vs − v)ds

︸ ︷︷ ︸

leads to Km
N

(13)

−
∫

s

εNξ3
(
δρ,j · aij(n⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)v,i

)
ds,

︸ ︷︷ ︸

leads to Kr
N

(13 a)

where aij are contravariant components of the metric tensor for the master
surface and ρj =

∂ρ
∂ξj , j = 1, 2 are covariant basis (tangent) vectors. Here, the

first term (resp. the second term) after approximation of the geometry leads
to the main part of the contact matrix Km

N (resp. the rotational part of the
contact matrix Kr

N).

All parts can be algorithmically implemented for any order of approximation.
In order to do this only the operator A for the approximation of the surface

geometry has to be introduced. The derivatives with respect to convective
coordinates Aξ are also necessary. Thus, the approximation can be written as

rs − ρ = A{x}, ρξ = Aξ{x} (14)

where x is a nodal vector for the standard FE implementation, or a control

points (knots) vector for a CAD approximation. This leads e.g. to the following
structure of the contact matrix Km

N

Km
N = −

∫

s

εNAT · (n⊗ n)Ads, (15)

where the integral is computed via the set of Gauss points defined on the slave

segment and penetrating into the master surface (so-called penalty based Mor-
tar method, see Fischer and Wriggers [6]).

4.2 Linearization of the tangential part δW T

c
, sticking case

The sticking case is understood as a case where the tangential traction remains
in the elastic region and, therefore, is computed via the evolution equations ii).

Linearization leads to
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D(δW T
c ) = D(

∫

s

T tr
i δξids) = (16)

=

∫

s

(δrs − δρ) · B(vs − v)ds−
︸ ︷︷ ︸

leads to Km
T,st

−
∫

s

Ti

(
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

)
ds,

︸ ︷︷ ︸

leads to Kr
T,st

4.3 Linearization of the tangential part δW T

c
, sliding case

The sliding case is understood as a case where the yield condition iii) is fulfilled

and, therefore, the tangential traction is computed as a sliding traction given
in eqn. (12). The corresponding linearization leads to

D(δW T
c ) = D(

∫

s

T sl
i δξids) = (17)

=

∫

s

(

(δrs − δρ) · εNBFTtr ⊗ n√
BFTtr · FBFTtr

(vs − v)

)

ds

︸ ︷︷ ︸

leads to K
m,1
T,sl

−
∫

s

(

(δrs − δρ) · |N | BFB√
BFTtr · FBFTtr

(vs − v)

)

ds

︸ ︷︷ ︸

leads to K
m,2
T,sl

+

∫

s

(

(δrs − δρ) · |N | BFTtr ⊗ (BFB)TFBFTtr

√

(BFTtr · FBFTtr)3
(vs − v)

)

ds

︸ ︷︷ ︸

leads to K
m,3
T,sl

−
∫

s

T sl
i

[
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

]
ds.

︸ ︷︷ ︸

leads to Kr
T,sl

Now we can summarize the results concerning the symmetry of the necessary
tangent matrices. As expected, all parts concerning non-frictional and sticking

contact, namely Km
N , Kr

N , Km
T,st and Kr

T,st are symmetric. Attention should be
paid to the sliding tangent matrix, because it contains both, symmetric and

nonsymmetric parts:
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K
m,1
T,sl is the first main part due to the coupling of the normal and the sliding

tractions. It appears due to linearization of the normal traction N and it is
nonsymmetric.

K
m,2
T,sl is the second main part. It appears due to linearization of the normal

trial tangential traction Ttr and preserves symmetry.

K
m,3
T,sl is the third main part and nonsymmetric. It appears due to linearization

of the complex term 1√
BFTtr ·FBFTtr

reflecting the coupling of anisotropy for ad-
hesion and friction.

Finally, Kr
T,sl is the rotational, symmetric part reflecting rotation of the master

segment, for more details see [17].

5 Augmented Lagrangian method and symmetric Uzawa algorithm

The main advantage of the Augmented Lagrangian in comparison to the penalty
method is the possibility to select a value of the penalty parameter leading to
well conditioned tangent matrices together with the enforcement of the con-

straint conditions (non penetration and sticking) within a specified tolerance.
The method is constructed as a nested algorithm known as Uzawa algorithm and

possesses linear convergence. The algorithm using the full consistent tangent
matrix is known as exact Uzawa algorithm, while the inexact algorithm is ex-

ploiting a somehow simplified matrix, see results on convergence in Stadler [18].
Laursen and Simo [12] developed a symmetrized Uzawa algorithm, where sym-
metric matrices for the sliding case have been obtained under the assumption

that the normal traction remains constant for the solution of the equilibrium
equations within an internal loop. This preserves the quadratic rate of con-

vergence for the internal loop. The correct value is enforced then within the
external loop where a linear rate of convergence is preserved.

5.1 Limitations of the Augmented Lagrangian approach for the coupled anisotropic

model

The complexity for a generalization of the discussed algorithm into anisotropic

friction especially including anisotropic adhesion is that the sliding tangent ma-
trix is fully nonsymmetric, moreover, the assumption of isotropy together with

the constant normal traction would lead only to the rotational part of the tan-
gent matrix. Since, this part has no influence for small displacement problems

as well as in the case when the master segment has no rotation, we obtain only
zero matrices. This makes it impossible to obtain any solution. Fortunately,

7



the covariant approach allows to estimate the influence of the matrices part by
part. Thus, we can construct a symmetric algorithm and analyze it numerically.

Another problem for the coupled anisotropy is that the sticking case is de-
fined when the slave contact point lays inside the elliptic adhesion domain, see

Fig. 1. However, as is known from numerical results the ratio a
b

= µ1ε2

µ2ε1
does not

influence the convergence result in the penalty based approach and can lead to
correct kinematics even for large sliding problems. An enforcement to put a

slave contact point inside the adhesion ellipse via the Augmented Lagrangian
approach necessarily leads to dis-convergence in cases as a

b
→ 0, or a

b
→ ∞.

In computation due to the linear convergence of the Augmented Lagrangian
method the global number of iteration is proportional to the ratio a

b
for a > b,

e.g. a simply computable case with a
b

= 10 would lead to a 10-times increase of
the global number of iterations for the Augmented Lagrangian method. Thus,

one should judge the coupled anisotropic model as an interface model for tan-
gential traction, rather than a penalty based approach.
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Figure 1: Allowable elastic region (adhesion domain).

Summarizing the discussion, we can define computable cases for the Aug-
mented Lagrangian method in application to the coupled anisotropic model
for:

1. Small sliding problems with low anisotropy. Small sliding can be numerically
defined as a case where it is important to compute the distribution of the
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Figure 2: Geometry and loading for the case of polar orthotropy.

sticking-sliding zone. The low anisotropy is defined then as a case with
a
b
≈ 1.

In this case, Lagrangian multipliers for both normal N , and tangential

traction T are augmented. The convergence for tangential displacements is
checked by the proximity to the initial contact point:

√

aij(ξi
(I) − ξi

(K−1))(ξ
j

(I) − ξ
j

(K−1)) ≤ εT , (18)

where εT is a specified tolerance for tangential displacements. The conver-

gence for normal displacements is checked as in the standard isotropic case
by the normal penetration

|ξ3| ≤ εN , (19)

where εN is a specified tolerance for the normal penetration.

2. Large sliding problem with arbitrary anisotropy. Large sliding can be nu-
merically defined as a case where sliding is reached within a single load

step. In this case, the global kinematical behavior of a contacting body is
of interest rather than the distribution of the sticking-sliding zone.

In this case, the Lagrangian multiplier only for the normal traction N needs
to be updated because the tolerance of the sticking condition will normally

not influence the tolerance of the computed trajectory. Thus, convergence
is checked only for the normal displacement.
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Table 1: Update scheme for normal traction N

1. Loop over applied in load incremental steps: K = K + 1
initialization of Lagrange multiplier λ0

N = 0

2. Loop over augmented multipliers: L = L + 1

3. Iterative solution of
global equilibrium equations:

with normal force

NK,L,I = λL−1
N + εNξ3

I

penetration ξ3
I is computed in each iteration I .

Update multipliers

λL
N = NK,L,I

Convergence is checked by the non-penetration condi-
tion:

|ξ3
I | ≤ εN , for NK,L,I < 0,

where εN - specified tolerance for normal displacements

The symmetrized algorithm in accordance with the inexact Uzawa approach
which appears to be numerically effective for the current anisotropic problem is

constructed as follows. The internal loop, No. 3 in Table 1 and 2, serves for the
solution of the equilibrium equations. The normal traction NK,L,I is computed

via the augmented scheme and updated inside loop 2. The trial tangential trac-
tion TK,L,I for small sliding problems is computed via the augmented scheme.
The update according to the scheme ∆λL

T = ∆λL−1
T + B(ξ(I) − ξ(K−1)) inside

loop 2 allows to enforce sticking conditions similar to the normal penetration.
The modification for large sliding problems is as follows: the sticking condition

is satisfied in the penalty form, then the trial tangential traction TK,L,I is com-
puted as TK,L,I = TK−1,L,I + B(ξ(I) − ξ(K−1)). The Lagrange multiplier for the

tangential traction vector ∆λL−1
T is not introduced and, therefore, an update

loop 2 does not exist.
An important modification for symmetrization should be done for the return-

mapping scheme, see Table 3, where the sliding force instead of eqn. (12) is
computed via the augmented multiplier for the normal traction λL−1

N as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|λL−1
N |. (20)

The yield function (6) is respectively modified as

Φλ =

√

T
K,L,I
tr · FT

K,L,I
tr − |λL−1

N |. (21)

This leads to a constant sliding force for the internal loop and, therefore, the
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Table 2: Update scheme for trial tangential traction T

1. Loop over load applied in incremental steps: K = K + 1
initial condition for tangential traction T0,0,0 = 0

initialization of Lagrange multiplier ∆λ0
T = 0

2. Loop over augmented multipliers: L = L + 1

3. Iterative solution of
global equilibrium equations:

with tangential traction

TK,L,I = TK−1,L,I + ∆λL−1
T + B(ξ(I) − ξ(K−1))

ξ(I) is a projection point in each iteration I ,
ξ(K−1) is a projection point in the previous load
step.

Update multipliers

∆λL
T = ∆λL−1

T + B(ξ(I) − ξ(K−1))

Convergence is checked by proximity
to the initial sticking point:

√

aij(ξi
(I) − ξi

(K−1))(ξ
j

(I) − ξ
j

(K−1)) ≤ εT ,

where εT - specified tolerance for tangential displace-
ments

first main part of the sliding tangent matrix is zero K
m,1
T,sl = 0. Then, the full

tangent matrix for the sliding case becomes:

K
full
sl = Km

N + Kr
N + K

m,2
T,sl + K

m,3
T,sl + Kr

T,sl. (22)

The part K
m,3
T,sl is still nonsymmetric due to anisotropy. The matrix is fully

symmetric only for isotropic friction. As it was found in numerical computations

we can exclude this part with only a small loss of efficiency. This finally leads
to the following matrix in the sliding case according to the inexact Uzawa

algorithm:
K

full
sl = Km

N + Kr
N + K

m,2
T,sl + Kr

T,sl. (23)

The tangent matrix for sticking remains symmetric:

K
full
st = Km

N + Kr
N + Km

T,st + Kr
T,st. (24)

6 Numerical examples

Two cases with different anisotropy have been selected to illustrate the conver-

gence for the proposed approach: constant orthotropy and polar orthotropy on
the plane.
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Table 3: Return-mapping scheme for the symmetric Augmented Lagrangian method

1. Loop over load applied in incremental steps: K = K + 1
initial condition for tangential traction T0,0,0 = 0

initialization of Lagrange multiplier ∆λ0
T = 0

initialization of Lagrange multiplier ∆λ0
N = 0

2. Loop over load augmented multipliers: L = L + 1

3. Iterative solution of
global equilibrium equations:
a) compute trial tangential traction T

K,L,I
tr

(Table 2)

b) compute trial yield function Φλ

Φλ =

√

T
K,L,I
tr · FT

K,L,I
tr − |λL−1

N |.
c) return-mapping: real tangential traction

TK,L,I

TK,L,I =







T
K,L,I
tr if Φλ < 0

Tsl = − T̂
√

T̂ · FT̂
|λL−1

N | if Φλ ≥ 0

(25)

where T̂ = BFT
K,L,I
tr

6.1 Small sliding problem. Constant orthotropy.

We present here an example, which has been analyzed for the penalty based
approach in [14]. The rectangular block, see Fig. 3, is considered on an or-
thotropic plane. The dimensions of the block are 10× 10× 4 with linear elastic

properties: Young’s modulus E = 2.10 · 104 and Poisson ratio ν = 0.3, assumed
within a consistent dimension system.

The case of constant orthotropy is defined by the spectral representation of
both, the adhesion tensor B, and the friction tensor F as follows:

B = [bi
j] = −

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sinα cos α

(ε1 − ε2) sinα cos α ε1 sin2 α + ε2 cos2 α

]

. (26)

F = [f i
k] =









1

µ2
1

cos2 β +
1

µ2
2

sin2 β (
1

µ2
1

− 1

µ2
2

) sin β cos β

(
1

µ2
1

− 1

µ2
2

) sinβ cos β
1

µ2
1

sin2 β +
1

µ2
2

cos2 β









. (27)

The following parameters are taken for the computations: normal penalty
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Figure 3: Geometry and loading of the rectangular in plane block.

parameter: εN = 2.1 · 104; adhesion parameters: ε1 = 3.0 · 104, ε1 = 2.0 · 104;
friction coefficients: µ1 = 3.0, µ2 = 2.0; tolerance for penetration: εN = 1.0 ·
10−5; tolerance for tangential displacement: εT = 1.0 · 10−5; orthotropic angles:
α = 45o, β = 45o. This leads to a, so-called, geometrical isotropic case because

of the ratio ε1µ2

ε2µ1
= 1.0.

The block (see Fig. 3) is located on the XOY plane and loaded by vertically
prescribed displacements on the upper surface w = 1.0·10−2. The penalty based

approach gives convergence in 4 iterations, but both normal and tangential
displacements inside the sticking region do not satisfy the prescribed tolerance.

The results for the Augmented scheme are presented in Table 4. The method
shows linear convergence as can be seen from the Tolerance column.

6.2 Large sliding problem. Polar orthotropy.

For the case with large sliding, we consider the block on a plane with polar
orthotropy see [14]. An elastic block with dimensions 1×1×0.25 and mesh 4×
4×1 is positioned on a rigid block, see Fig. 2. Linear elastic material is assumed

within a consistent dimension system: Young’s modulus E = 2.10 ·104; Poisson
ratio ν = 0.3. The loading is applied sequentially by prescribing displacements

on the upper surface in (1 + n) steps: 1) vertical loading with w = 1.0 · 10−2,
2) n steps with horizontal displacement increments ∆u = 1.0 · 10−2 along the
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X axis. The frictional tensor is isotropic with µ1 = µ2 = 0.2, but the adhesion
tensor has the following structure in the Cartesian coordinate system:

B = − 1

x2 + y2

[
εrx

2 + εϕy2 (εr − εϕ)xy

(εr − εϕ)xy εry
2 + εϕx2

]

. (28)

Parameters for the adhesion tensor are chosen as εr = 1000, εϕ = 0.0, in order

to obtain the circular trajectory of the sliding block. Now only the normal
tractions N are updated and a tolerance for penetration εN = 1.0·10−5 is chosen.

The gap for the penalty based approach is computed as ξ3 = 7.26 · 10−3 if the
normal penalty εN = 2.1 · 104 is chosen. The total number of iterations (4556)
compared with the penalty approach (1834) is influenced only by the normal

penetration. The final coordinates of the nodal point X = 0.292, Y = 4.996
are compared with the results focused with the penalty approach X = 0.306,

Y = 4.994 in order to show that the main kinematical effect of the anisotropic
surfaces is preserved for the Augmented Lagrangian method. A comparison

of both trajectories leads to a slight difference comparable to the value of the
initial penetration and the initial sticking displacements.

Table 4: Constant orthotropy on a plane. Convergence results for the symmetric Augmented Lagrangian
method.

Aug. No. Number of eq. iter. Tolerance
1 7 1.8742 · 10−3

2 14 6.0419 · 10−4

3 12 1.7536 · 10−4

4 12 4.0497 · 10−5

5 12 3.5972 · 10−6
∑

56

7 Conclusions

In this contribution a symmetrization of the stiffness matrix has been developed

within the Augmented Lagrangian method for anisotropic contact surfaces in-
cluding both, anisotropy for adhesion and anisotropy for friction domains. It
is shown that in general a fully coupled model necessarily leads to a fully non-

symmetric matrix in the case of sliding, but the covariant approach allows to
estimate the structure of the tangent matrix part by part and, therefore, allows

to construct a symmetric matrix used in accordance with the inexact Uzawa al-
gorithm. However, as is shown, the Augmented Lagrangian method can not be

directly applied to arbitrary anisotropic surfaces due to convergence problems.
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Thus, to create a robust algorithm, contact problems have to be subdivided
into small sliding problems with low anisotropy where the distribution of the

sticking-sliding zone is of interest, and into large sliding problems where the
trajectory of the sliding body is of interest.

For the small sliding problems, both the normal, and the tangential contact
tractions are augmented within the nested Uzawa algorithm. This makes it pos-
sible to enforce both normal and tangential sticking displacements to satisfy a

prescribed tolerance. For the large sliding problems only the normal traction is
augmented leading to the enforcement of only the normal displacements to sat-

isfy a prescribe tolerance. In both cases the return-mapping scheme is exploited
to obtain the real sliding tractions. Numerical examples including constant as

well as nonlinear orthotropy e.g. a polar orthotropy showed the effectiveness of
the proposed approach.
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