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Abstract.
The necessity to apply a coupled contact interface model including anisotropy

for both adhesion and friction is shown via a set of experiments for a rubber
surface possessing a periodical waviness, and therefore, an obvious anisotropic

structure. The focus of experimental investigations is placed upon the measure-
ments of the global macro characteristics such as global forces and trajectories
of a sliding block in order to validate the proposed computational model.
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1 Introduction

Smoothness and isotropy of contacting body surfaces can vary considerably

for different contact problems. Classifying the surfaces roughness two types
can be distinguished: a) surfaces with randomly distributed asperities, and b)

asperities with algorithmic structure, e.g. the considered surface shows different
macro properties in different directions.

Mechanical characteristics for the associated contact problems of the first
type a) are obtained via statistically distributed asperities. Statistical analy-
sis of a real rough surface and experimental aspects of its measurements have

been developed in a series of publications: Longuet-Higgins [20], Greenwood
and Williamson [9], Whitehouse and Archard [22] and more recently White-

house and Phillips [23] and Greenwood [10]. A comparative analysis of these
surface models is presented in McCool [17]. These experimentally proved mod-

els later have been incorporated into finite element models, see e.g. Wriggers
and Zavarise [25], [26], Buczkowski and Kleiber [6]. More advanced numerical

analyses including homogenization methods and multi-scaled modeling are pre-
sented in Bandeira et. al. [1], [2]. Carbone and Mangialardi [7] derived contact
tractions analytically for a particular example with a rigid wavy surface with a

sinusoidal profile, assuming the presence of an adhesion hysteresis for 2D plane
strain elasticity problem.

Constitutive modeling is applied for problems of the second type b). Such
models are based on the generalization of Coulomb’s friction law into the
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anisotropic domain. One of the first models has been proposed by Michalowski
and Mroz [18] considered the sliding of a rigid block on an inclined surface.

A model of orthotropic friction has been analyzed and consistently developed
in Zmitrowicz [28], Curnier [8]. Various cases of anisotropy were presented in

He and Curnier [11] based on the theory of tensor function representations and
in Zmitrowicz [29] based on consideration of a relative sliding velocity. In the
latter contribution, a classification of anisotropic surfaces based on the number

of eigenvalues of the friction tensor has been proposed.
When looking at practical problems concerning contact interactions with fric-

tion between bodies made of soft rubber-like materials there are some situations
in which the tangential elasticity of the contact surfaces should be taken into

account. In these cases anisotropy for elastic forces (adhesion) and
frictional forces might be coupled. Such a model including coupling of

anisotropy for both friction and adhesion has been developed and analyzed nu-
merically in Konyukhov and Schweizerhof [14], [15]. In the current contribution
we discuss the validation of this model with a particular experimental test. The

contact surfaces are chosen to possess visual orthotropic properties, thus a cor-
rugated rubber mat is taken. The results of the experiments show the

necessity to use the coupled model including anisotropy for both fric-
tion and adhesion. Some originally surprising experimental phenomena, such

as geometrically isotropic observed behavior of a sliding block despite obvious
physical anisotropies can be explained only within the proposed model.

2 Experimental investigation

A series of experimental tests are performed in order to investigate the global

characteristics of the system ”block on a rough surface”. The rough surface
possesses visually a clear periodical structure and, therefore, the mechanical
constitutive model for an observable orthotropic structure can be applied. Since

we are trying to verify the average interface model, the measured values in
experiments are intentionally chosen to be global, namely we measure global

forces leading to the macro friction coefficients and trajectory of a block instead
of micro friction coefficients and corresponding stiffnesses of asperities. The

focus of the discussion is placed upon the kinematical behavior of the block
driven by a constant force together with the measurement of force components
leading to this motion. Therefore, the main measurable characteristics during

these experiments are global forces and trajectories of the block, which create
a main basis for further calibration of models for orthotropic friction. For

the judgment of the results Coulomb like models are assumed a-priori to be
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valid for the global behavior, i.e. that the tangential driving global force F is
proportional to the normal reaction N : F = f(x, y)N , where a function f(x, y)

describes the orthotropic properties of a surface.

2.1 Experimental setup

A massive block positioned on a plane is moved with constant velocity by a
sliding carriage guided by rods on both sides, see Fig. 1. The block made from
steel has dimensions 110 × 110 mm in plane and 20 mm height. The mass is

m = 1.875kg. The contact surface between the sliding carriage and the block
is covered with a Teflon(R) strip to minimize the friction between them due

to relative sliding. In contrast to this, the contact surface of the steel block
is covered by a suede-like material with square 90 × 90 mm to increase the

interaction between the block and the basement. A constant driving velocity is
achieved by a step motor acting on a rack, which allows a straight displacement
of 500 mm. The contact force between the rack and the sliding carriage is

measured by a force sensor. The displacement of the block during sliding is
captured by an optoelectronic device which is installed on a tripod above the

surface. The corresponding LED (light-emitting diode) is fixed on the block.

Figure 1: View on experimental setup.

For the first set of experiments a rubber mat with rather stiff ripples has been
taken. Naturally it was represented by an aged corrugated rubber map. The
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frictional orthotropy is given by the wavy profile of the contact rubber surface
with parallel ripples possessing in the cross section a periodical structure, see

the CAD model in Fig. 2. The distance between the ripples is rather small in
comparison to the dimension of the contact area of the block allowing approxi-

mately 30 ripples in contact area depending on orthotropy angle in experiments.
The orientation of the ripples with respect to the fixed driving direction can
be varied from 0o up to 90o by repositioning the mat, see Fig. 3. Again we

should mention that the aim of the experiments is to show the necessity of a
coupled anisotropic model for adhesion and friction, therefore, we intentionally

skip any measurement of ripple stiffnesses concentrating on finding the global
macro characteristics of the coupled behavior.

Figure 2: Geometrical structure of the corrugated rubber mat.
Wavy periodical profile, CAD model.
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Figure 3: Orientation of the orthotropy with respect to the fixed direction of the velocity: a) α = 0o, b)
α = 0o < α < 90o, c) α = 90o. The trajectory of the block is a straight line declined at angle ϕ.
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2.2 Experimental results

At the beginning some experiments are performed to find out the global macro

mechanical properties of the system. All experiments were reproduced with
a driving velocity of the carriage v = 24.4 cm/sec. First of all, the sliding

carriage was moved without the block in order to define the internal resistant
force Fint. Then experiments have been made with the sliding block to define

the resulting driving force in the case α = 0o, corresponding to the X1-axis along
the ripples, see CAD model in Fig. 2, and α = 90o, corresponding to the X2-axis
across the ripples, see CAD model in Fig. 2, respectively. These measurements

together with subtracting the internal force lead to the definition of macro
friction coefficients µ1 and µ2 corresponding to angles α = 0o and α = 90o.

Assuming Coulomb friction law the friction coefficients µi were computed as

µ1 =
Fα=0o − Fint

N
=

12.50 − 5.00

1.875 · 9.806
= 0.408 ≈ 0.41

µ2 =
Fα=90o − Fint

N
=

16.50− 5.00

1.875 · 9.806
= 0.625 ≈ 0.63. (1)

We note for further references that the macro friction coefficient across the

ripples is found to be higher than the macro friction coefficient along ripples.
The second set of experiments to find macro parameters of the interface model

is made by setting the angle α varying in steps from α = 0o up to α = 90o. The

focus lies on the definition of the trajectory of the sliding block. In all cases,
the trajectory was observed as a straight line inclined with the angle

ϕ = ϕ(α), see sketch in Fig. 3(b). The mean value ϕ after 10 experiments
for each angle α is taken for the representation. Combining all results leads

to the diagram in Fig. 4 showing the dependency of the inclination angle ϕ
on the orientation of the orthotropy given by the angle α of the ripples. The

maximum of the inclination angle ϕ is located in the range of small angles α
(the maximum is on the left side on the graph).

2.2.1 Geometrically isotropic observed behavior of a sliding block

As a fairly surprising result detected in the experiments a large sensitivity to

the elastic properties of the rubber ripples was obtained. Thus, if the rubber
mat with highly elastic rubber ripples (e.g. a new mat) has been taken for the
second set of experiments, then the inclination angle ϕ was only varying in a

very small range about 0 ≤ 2o. However, the measurement of forces still showed
the difference between the macro coefficients of friction µ1 and µ2. We observe

that macro friction orthotropy is still present, but the kinematical effect of the
orthotropy disappears.
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Figure 4: Observed mean value of the inclination angle ϕ vs. orthotropy angle α. Experimental results for
different velocities of the block.

As we show later, the orthotropic friction model is not capable to describe

this effect from the macro-model point of view, but the coupled orthotropic
adhesion – orthotropic friction interface model allows to qualitatively describe

the observed phenomena.

3 Analysis of various models for anisotropic friction and applicabil-
ity to the observed phenomenon.

In this section, the range of applicability of a classical model of orthotropic

friction, based only on the orthotropic friction tensor and its generalization
including orthotropy for both friction (inelastic region) and adhesion (elastic
region) is discussed. The necessity to assume in addition elastic properties for

the surface will be shown.
As a first simple model which can be investigated analytically a material

point on a plane is considered. According to the experimental tests we assume
a quasi-statical motion of the material point A with weight P loaded by the

force F acting along the X1-axis, see Fig. 5. The orthotropic properties of the
surface are defined in the coordinate system ξ1, ξ2 inclined with an angle α to
the original coordinate system. During quasi-statical loading, point A is moving

along a line with velocity vector v inclined with an angle ϕ. The reaction force
T with Cartesian components T1, T2 is acting on the point. The values of com-

ponents depend on the hypothesis concerning the orthotropic friction law. Here

6



two variants of the orthotropic law are considered: the well known orthotropic
friction Coulomb law and a contact interface model including orthotropy for

both friction and adhesion, see Konyukhov and Schweizerhof [14], [15].

X1

ξ2
X

2

α
ξ1

O

F
−T

−T

A v
ϕ

1
2

Figure 5: Motion of material point A on an orthotropic plane loaded by force F.

The equilibrium equations for the system in Fig. 5 are given as:






X1 : F + T1 = 0;
X2 : T2 = 0;

X3 : −P + N = 0.

, (2)

where N is the reaction force along the X3 axis.

The principle of maximum dissipation is applied to obtain relation be-
tween the sliding force T and sliding displacements ∆rsl. This principle requires
that the dissipation function Ψ reaches its maximum

Ψ := ∆rsl · T = ∆xi
slTi −→ max, (3)

where ∆rsl is an increment of the sliding vector. The dissipation function Ψ

must also satisfy the sliding condition, formulated via inequalities, reflecting
the assumed friction law, e.g. Coulomb’s law.

3.1 Orthotropic Coulomb friction law.

First, we recall the standard case known in literature, see e.g. [18], [8], [19], [29],

where orthotropy is defined only for the sliding forces. The model is formulated
according to the generalization of the sliding criteria. The yield function for

the Coulomb friction law is then written as

Φ :=
√

T · FT− |N | =
√

TiTjf ij − |N |. (4)

The sticking and the sliding conditions are defined by the rule:

Φ < 0 → sticking; Φ ≥ 0 → sliding. (5)
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According to equations (4-5) the material point is not moving during sticking

(no adhesion) and the motion starts when Φ = 0. The components of the
friction tensor f ij are defined for the orthotropy on the plane via e.g. the

spectral representation plane as follows:

F = QαΛFQT
α = (6)

=

[
cos α − sin α
sinα cos α

]

·






1

µ2
1

0

0
1

µ2
2




 ·

[
cos α − sin α
sinα cos α

]T

=









1

µ2
1

cos2 α +
1

µ2
2

sin2 α (
1

µ2
1

− 1

µ2
2

) sinα cosα

(
1

µ2
1

− 1

µ2
2

) sinα cosα
1

µ2
1

sin2 α +
1

µ2
2

cos2 α









,

where µi > 0 are friction coefficients along the axis ξi inclined at angle α.
The standard method of the convex analysis is applied to obtain the sliding

forces with regard to the principle of maximum dissipation (3). Thus, the
Lagrange function with the multiplier λ is specified as

L := −Ψ + λΦ = −∆xi
slTi + λ

(√

TiTjf ij − |N |
)

(7)

together with the complementary Kuhn-Tucker conditions:

λ ≥ 0, λΦ = 0. (8)

The optimality conditions
∂L
∂T i

= 0 lead to the following sliding displacement

components:

∆xi
sl = λ

Tjf
ij

√

TkTlf kl
. (9)

These equations recover the trajectory of a block as a straight line declined by
angle ϕ, which is confirmed by experiments.

Now, taking into account the second equilibrium equation (2) tanϕ can be

determined:

∆x1 = λ
T1f

11

√

TkTlf kl
,

∆x2 = λ
T1f

12

√

TkTlf kl
,







=⇒ tanϕ =
∆x2

∆x1
=

f 12

f 11
, (10)
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and, after transformations taking into account the values determined in eqn. (6),

we finally obtain:

tanϕ =
(µ2

2 − µ2
1)

µ2
2 + µ2

1 tan2 α
tanα. (11)

3.2 Model for orthotropic contact interfaces including both adhesion and friction.

An alternative model involving coupling orthotropy for both adhesion and

friction can be proposed including the elastic-plastic analogy and the return-
mapping scheme. This model is investigated theoretically and developed into
the computational model by Konyukhov and Schweizerhof [14], [15]. Then the

problem is formulated in continuous form as follows

a) The relative velocity vector of the contact point is decomposed additively

into an elastic part vel and a sliding part vsl

vr = vel + vsl. (12)

b) The elastic part vel is responsible for reversible deformations (adhesion)

and satisfies the evolution equations

dT

dt
= Bvel. (13)

At this point an adhesion tensor B describing orthotropic properties for the

elastic region is introduced.

c) The tangential force T must satisfy the following inequalities defined via
the yield function, which in tensor form can be written as:

Φ :=
√

f ijTiTj − |N | =
√

T · FT− |N | : (14)

• if Φ < 0 then the contact point is inside the elastic domain and T = Tel

is an elastic force,
• if Φ = 0 then the contact point is sliding and T = Tsl is a sliding force.

d) The power of the sliding forces, described by the energy dissipation function
D achieves its maximum:

D := ẋi
slT

sl
i = vsl · Tsl, D −→ max . (15)
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The principle of maximum dissipation requires that the plastic dissipation
function D subjected to the inequality conditions (14) achieves a maximum. For

the computational treatment, the model is reformulated in incremental
form and then the return-mapping scheme is applied. The incremental analog

is given as

i) The full incremental displacement vector ∆xi = ∆xi
(n+1) − ∆xi

(n) is decom-

posed additively into an elastic increment ∆xi
el and into a sliding increment

∆xi
sl:

∆xi = ∆xi
el + ∆xi

sl. (16)

ii) The elastic increment ∆xi
el is computed via the incremental evolution equa-

tions, for which the tensor B is assumed to be constant:

T tr
i (n+1) = bij∆x

i (n+1)
el = bij(x

i (n+1)
el − xi (0)). (17)

iii) In order to decide whether the trial force Ttr is a sliding force Tsl or a
sticking force Tst the yield condition is checked in each load step:

Φtr :=
√

f ijT tr
i (n+1)T

tr
j (n+1) − N(n+1) (18)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the maximum of

the energy dissipation function given in incremental form.

iv) The incremental analog of the continuous formulation eqn. (15) is then:

D
(n+1)
min := −∆rsl · Tsl

(n+1) = −∆xi
slT

sl
i (n+1), D

(n+1)
min −→ min . (19)

We recall the results obtained in [14], [15]. There the sliding force Tsl can be

defined after the necessary transformations as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (20)

Now, we must follow the return-mapping scheme in order to define the in-
clination angle ϕ. The problem is considered as a displacement driven one,

therefore the incremental displacement ∆r = {∆x1, ∆x2} is applied. Thus, in
each load step the sliding force in eqn. (20) is computed as:

Tsl = − BFB∆r√
BFTtr · FBFTtr

|N | = A∆r. (21)
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Now, if sliding is assumed, the second component of the sliding force T2 in the
formulation depicted in Fig. 5 becomes zero, see equilibrium eqn. (2). Thus,

the displacement vector components ∆x1, ∆x2 are coupled via the equation:

T2 = 0 =⇒ a21∆x1 + a22∆x2 = 0, (22)

leading to the equation for the angle ϕ:

tanϕ =
∆x2

∆x1
= −a21

a22
. (23)

3.2.1 Analysis of the model by general spectral representation.

In order to calibrate later a theoretical curve ϕ(α) from the experimental tests

presented in Fig. 4, we consider a spectral decomposition of the matrix A given
in eqn. (21) as

A = [aij] =





λ2
1 cos2 α + λ2

2 sin2 α (λ2
1 − λ2

2) sinα cos α

(λ2
1 − λ2

2) sinα cosα λ2
1 sin2 α + λ2

2 cos2 α



 , (24)

leading together with the condition (23) to the observed sliding angle ϕ defined

as

tanϕ = −a21

a22
= −(λ2

1 − λ2
2) sinα cos α

λ2
1 sin2 α + λ2

2 cos2 α
= −(λ2

1 − λ2
2) tanα

λ2
1 tan2 α + λ2

2

. (25)

An analysis for extremal values gives us

d tanϕ

d tanα
= 0, =⇒ (λ2

1 − λ2
2)(λ

2
2 − λ2

1 tan2 α) = 0. (26)

The first bracket leads to the isotropic case, whereas from the second one the

following critical value is obtained:

tanαext =
λ2

λ1
, (27)

leading to the extremum of the observed inclination angle ϕext for the motion
of the point

tanϕext =
λ2

2 − λ2
1

2λ1λ2
. (28)

Considering the last equation (28) we can obtain a critical ratio of the eigen-

values

ratioext =
λ1

λ2
= − tanϕext ±

√

tanϕ2
ext + 1. (29)

This value will be used during the validation procedure.
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For further considerations we adopt the spectral decomposition also for the
adhesion tensor

B = QαΛBQT
α = (30)

=

[
cos α − sin α
sinα cos α

]

·
[
−ε1 0
0 −ε2

]

·
[

cos α − sinα
sin α cosα

]T

=

=

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sin α cosα
(ε1 − ε2) sinα cos α ε1 sin2 α + ε2 cos2 α

]

,

where εi > 0 are stiffnesses along the axis ξi inclined at angle α.

Remark:
The trajectory of a block is a straight line inclined by the angle ϕ. Moreover,

the observed inclination angle ϕ does not depend on particular values of λ1, λ2,
but only on its ratio λ1/λ2.

3.2.2 Mechanical interpretation of the model.

As is known, the mechanical interpretation of the regularized friction model

assuming elastic deformations is a spring-slider system, see Simo and Hughes
[21]. As generalization of this; according to our model, we consider a material

point with two spring-slider systems, see Fig. 6. The properties of these systems
are the following: εi – stiffness of ith spring, µi – coefficient of friction for ith

sliding device. Each system i is constrained to move parallel along the axis Xi

respectively. The constant force F inclined with angle α to the coordinate axis
X1 is applied to the point. Then the trajectory of the point lies either above

the force line or below the force line depending on the ratio of eigenvalues λ1

and λ2 as discussed later, see also computational analysis in [15].

4 Calibration of parameters for different models

As a representative parameter we take the curve ϕ(α) known from the ex-

periment, see Fig. 4. In addition, we distinguish two orthotropy angles: α –
orthotropy angle for the adhesion tensor B and β – orthotropy angle for the

friction tensor F. In order to unify the computations we chose the orthotropic
values as µ1 < µ2 and ε1 < ε2. The following test computations are performed

for calibration purposes:

1. The orthotropic friction model as discussed in Section 3.1.
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Figure 6: Mechanical interpretation of the orthotropic adhesion – orthotropic friction model. A material point
on a plane with a two spring – two slider system loaded by the force F in plane.

2. The interface model including coupled orthotropy for both adhesion and

friction as discussed in Section 3.2 with the specific case of isotropic adhe-
sion B = −εE.

3. The interface model including coupled orthotropy for both adhesion and

friction with the specific case of isotropic friction F =
1

µ2
E.

4. The interface model including orthotropy for both adhesion and friction
with the specific case of coinciding orthotropy angle α = β.

5. The interface model including orthotropy for both adhesion and friction
with the specification of the friction orthotropy angle β by 90o degrees as

β = α + π/2.
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4.1 Case 1

We start the validation from the simple model including only orthotropic friction

as discussed in Sect. 3.1. Our aim is to find out a case describing qualitatively
the experimental results. Therefore, we perform a test computation with the

following friction coefficients µ1 = 0.1, µ1 = 0.5. In Fig. 7 the results are
depicted. In addition, at an extremal angle α = arctan µ2

µ1

= (78.69o) the

maximum value ϕmax = arctan
µ2

2 − µ2
1

2µ1µ2
= (67.38o) is computed by analyzing

the shape of a curve. It can be seen, that the point is moving into the direction

with a smaller friction coefficient, which contradicts the experimental curve, see
Fig. 4.
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Figure 7: Computed inclination angle vs. orthotropy angle.
Case 1: Purely orthotropic friction model.

4.2 Case 2

As a next step, we choose the orthotropic adhesion – orthotropic friction inter-

face model, but including orthotropy only for the friction tensor and keeping
the adhesion tensor to be isotropic, B = −εTE. In this case, a structure of the

matrix in eqns. (21) and (24) is given as A = −ε2
TF leading to the inclination

angle in eqn. (25) to be defined as

tanϕ =
(µ2

1 − µ2
2) tanβ

µ2
1 + µ2

2 tan2 β
. (31)

The analysis with the values µ1 = 0.1 and µ2 = 0.5 gives the curve presented

in Fig. 8 with the extremal parameters βext = 11.31o and ϕmin = −67.38o. In
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this case, the point tends to move into the direction with the larger friction
coefficient. This is also a contradiction to the experimental results.
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Figure 8: Orthotropic adhesion – orthotropic friction interface model. Computed inclination angle vs. or-
thotropy angle. Case 2: isotropic adhesion – orthotropic friction.

4.3 Case 3

As a next step, within the orthotropic adhesion – orthotropic friction interface
model orthotropy is assumed only for adhesion with parameters ε1 = 1 ·104 and

ε2 = 5 · 104. The following structure of the matrix A is obtained

A = BFB =
1

µ2
B, (32)

leading to an inclination angle ϕ defined as

tanϕ =
(ε2

2 − ε2
1) tanα

ε2
2 + ε2

1 tan2 α
. (33)

The result is depicted in Fig. 9 with the extremal values as αext = 78.69o and
ϕmax = 67.38o. The curve shows a motion into the direction with the smaller

stiffness ε1. This contradicts the experimental results as well.
Summary

We observed that neither the purely orthotropic friction model, nor the coupled

model with separately included orthotropy either for friction, or for adhesion is
unable to capture the phenomena even qualitatively.

4.4 Case 4

Now we keep the orthotropy for both the adhesion tensor and the friction tensor
with the same angle, namely α = β. The structure of the tensor A is found
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Figure 9: Orthotropic adhesion – orthotropic friction interface model. Computed inclination angle vs. or-
thotropy angle. Case 3: orthotropic adhesion – isotropic friction.

from the spectral decomposition in eqns. (6) and (30) with Qα ≡ Qβ

A = BFB = QαΛB QT
αQβ

︸ ︷︷ ︸

E

ΛF QT
βQα

︸ ︷︷ ︸

E

ΛBQT
α = QαΛ

2
BΛFQT

α , (34)

leading to the eigenvalues λi = εi/µi. This case gives a more comprehensive
information for the analysis of the physical experiments. The most important

issue is that by the combination of two orthotropic tensors an isotropic case
can be recovered. This case appears if we take the value in proportion ε1

µ1

= ε2

µ2

leading to λ1 = λ2, e.g. with the combination of two previous cases with

ε1 = 104 and ε2 = 5 · 104 and µ1 = 0.1, µ2 = 0.5 isotropy of the motion is
recovered. For λ1 < λ2 we obtain a behavior similar to case 3; for λ1 > λ2 we

find a behavior similar to case 2. E.g. the computation with the parameters
ε1 = 0.5 · 104, ε2 = 5 · 104 and µ1 = 0.1, µ2 = 0.5 shows similarity to case 3 as

shown in Fig. 10. In this computational case, we assumed that the ripples are
softer in direction X1, see Fig. 2, which is obviously not the case even without
measurements of the ripple stiffnesses.

4.5 Case 5

Finally, we can choose the last possible modification for the observed geometri-
cal orthotropy for surfaces as taken in the experiment. We define a new angle
β̂ as a main angle of surface asperities in the experiment, see Fig. 11. The or-

thotropy angle β for the friction tensor is shifted by 90o degrees to β = α+π/2
with respect to the orthotropy angle α for the adhesion tensor. The structure

of the tensor A is given according to eqn. (34), but now the composition of the
two orthogonal matrices QT

αQβ leads to:
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Figure 10: Orthotropic adhesion – orthotropic friction interface model. Computed inclination angle vs. or-
thotropy angle. Case 4: orthotropic adhesion – orthotropic friction with eigenvalues λ1 < λ2.

QT
αQβ = (35)

=

[
cosα − sin α
sin α cos α

]T

·
[

cos β − sin β
sin β cos β

]

=

=

[
cosα − sin α
sin α cos α

]T

·
[
− sin α − cosα
cos α − sin α

]

=

=

[
0 −1
1 0

]

.

Then, the matrix A in eqn. (34) is derived as

A = BFB = QαΛB QT
αQβ

︸ ︷︷ ︸
ΛF QT

βQα
︸ ︷︷ ︸

ΛBQT
α (36)

= Qα







ε2
1

µ2
2

0

0
ε2
2

µ2
1







QT
α ,

leading to the following eigenvalues λ1 = ε1/µ2 and λ2 = ε2/µ1 in eqn. (24).
The computation with ε1 = 104 and ε2 = 103 and µ1 = 0.1, µ2 = 0.5 gives the

curve ϕ vs. β̂ depicted in Fig. 12, which quantitively has a shape similar to the
experimental one (maximum from the left side). The extremal values are found

as β̂ext = 26.56o and ϕmax = 36.87o.
Thus, summarizing the numerical investigations and focusing on the com-

parison to the experiments it becomes obvious that for the surface as given in
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the experiment it is necessary to apply the orthotropic adhesion – orthotropic
friction interface model.

X1

X
2

α
ξ1

O

ξ

2µ

2 µ1

β

β^

Figure 11: Definition of the experimentally observed angle β̂, by an orthotropy angle α for the adhesion tensor
and an orthotropy angle β for the friction tensor.
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Figure 12: Orthotropic adhesion – orthotropic friction interface model. Computed inclination angle ϕ vs. rede-
fined orthotropy angle β̂. Case 5: orthotropic adhesion – orthotropic friction with angles β = α + π

2
.

In this case, the force T2 measured in direction X2 is larger, while the rip-
ples are softer in the same direction, which is visually observed in experiments
even without measurement of ripple stiffnesses, see Fig. 2. Moreover, assuming
ε1

ε2

= µ1

µ2

we obtain ϕ(α) = 0, i.e. the block is no longer inclined, and we re-
cover the geometrically isotropic behavior already observed in experiments, see

Sect. 2.2.1. In this case, orthotropy for friction is compensated by orthotropy
for adhesion leading to the observed isotropic behavior of the block, though the

18



reason for this remains uncovered.

4.6 Calibration of the theoretical curve by extremal values

As found from the proposed model, the inclination angle ϕ depends only on the
ratio of eigenvalues λ1/λ2, see eqn. (25). This ratio contains information also

about the ratio of adhesion parameters ε1/ε2:

ratioext =
λ1

λ2
=

ε1

ε2
· µ1

µ2
. (37)

Since, the friction coefficients µ1, µ2 are defined via the measurement of forces in
the experiment, the inclination angle ϕ depends only on the ratio of eigenvalues
ε1/ε2, see also the Remark in Section 3.2.1. This fact gives the possibility to

judge macro properties for ripple stiffnesses without measurements. Thus, we
will use eqn. (25) for a calibration of the model. Calibration is provided accord-

ing to following rules: 1) a maximum rule – both theoretical and experimental
curves must achieve the same maximum; 2) a least square fit method. The

friction coefficients have been determined previously to µ1 = 0.408, µ2 = 0.625.
According to the maximum rule the value for the angle ϕext defined in

eqn. (29) is used for calibration purposes. Taking e.g. the maximum angle

ϕmax = 11.5o measured for the velocity 12.5 cm/sec the ratio of the eigenvalues
given in eqn. (29) becomes

ratioext =
λ1

λ2
= −0.20345± 1.02048 = 0.817, (38)

where only the positive solution is taken. The ratio of the stiffness coefficient
is then obtained as

ε1

ε2
=

µ2

µ1
· ratioext =

0.625

0.408
· 0.817 = 1.251 (39)

A more mathematically precise least square fit method leads to the statement
derived from eqn. (25). The following sum must be minimized:

N∑

k=1

{

tanϕ(k) +
(λ2

1 − λ2
2) tanβ(k)

λ2
1 tan2 β(k) + λ2

2

}2

=

=
N∑

k=1

{

tanϕ(k) +
(r2

λ − 1) tanβ(k)

r2
λ tan2 β(k) + 1

}2

−→ min, (40)

where ϕ(k) are measured declination angles vs. applied orthotropy angles α(k)

and β(k) = π/2−α(k). Minimization with regard to the variable r2
λ leads to the

19



following expression:

r2
λ =

∑N
k=1

{
tanβ(k)(1 + tan2 β(k))(tanβ(k) − tanϕ(k))

}

∑N
k=1

{
tanβ(k)(1 + tan2 β(k))(tanβ(k) + tanϕ(k))

} . (41)

The cases including the computed parameters are shown in Fig. 13 and do
not exhibit a quantitively good correlation, though we reached the aim to show

the necessity of coupling both orthotropy for friction and orthotropy for adhe-
sion in addition to the general applicability of the proposed model. Among the

possible reasons for the bad correlations might be the following:
a) a too simple linear elastic model for adhesion region;
b) the simple Coulomb friction model for the friction region without e.g. hys-

teresis etc.
Nevertheless, it seems to be important to consider fairly complex models in-

cluding the coupled orthotropy for the adhesion and the friction in order to
describe the observed phenomena more precisely.
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Figure 13: Observed inclination angle ϕ vs. redefined orthotropy angle β̂. Calibration: (1) by the absolute
maximum value for different velocities of the block; (2) by the least square fit method.
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6 Conclusions

The necessity to apply a coupled model including anisotropy for both adhe-
sion and friction is shown for particular soft anisotropic surfaces, such as a

periodic wavy rubber profile. The macro characteristics of the proposed model
such as macro friction coefficients µ1, µ2 can be defined via the measurement

of global forces, while the trajectory, namely, the observed sliding angle ϕ(α)
gives information about the ratio of orthotropic stiffnesses ε1/ε2. The model
does not show the dependence of particular values of stiffnesses ε1 and ε2 on

the trajectory, which was also confirmed by experiments. The model allows to
skip measurements of surface microstiffnesses. Moreover, particular phenomena

when a sliding block shows geometrically isotropic behavior can be described
correctly with the proposed model.

The considered model contains only the coupling of linear models for adhesion
and friction, which is a possible explanation for the rather poor quantitative

correlation with experiments. The key to achieve better correlation – from
our point of view – can be the coupling of a more general law for adhesion as
well as for friction. Thus, a more complex elastic law (e.g. Ogden material

law for 2D case) can be taken for the adhesion region together with a more
complex friction law for the friction region (e.g. see the proposals of He and

Curnier [11] and recently Zmitrowicz [31]). The calibration process, in due
course, can be provided by experimental investigations as well as by numerical

tests involving homogenization processes and multi-scale techniques, for which
the methodology for the isotropic case is shown in [1].
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