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Efficient strategies for goal-oriented error estimation and mesh adaptation in
structural dynamics

S. Kizio, K. Schweizerhof
Institut für Mechanik
Universität Karlsruhe

Abstract

This contribution deals with spatially adaptive schemes infinite element computations in structural dynamics based
on a semi-discrete approach. Both discretization steps, the spatial finite element discretization and the temporal
discretization by use of a suitable time stepping scheme introduce different errors into the numerical solution,
which can be controlled by adaptive approaches. Here we restrict ourselves focussing on the spatial discretization
error resulting from the finite element discretization of the spatial domain. The spatial discretization is carried
out by use of low order ’Solid-Shell’-elements. Since low order element suffer from locking an assumed strain
interpolation is used which has to be taken into account in the error estimation procedure.

For the estimation of the spatial discretization error in anarbitrary quantity of interest an appropriate adjoint or
dual problem has to be introduced. As the dual problem is a backward problem in time with initial conditions at the
current time and characterizes the spatial and temporal transport of the spatial discretization error, the numerical
evaluation of this dual problem for the error estimation results in a large numerical effort which might exceed
the effort for the computation of the problem on a finer spatial discretization. Thus a particular focus of our
contribution is on the reduction of the numerical effort forthe goal-oriented error estimation. For this purpose
we discuss which parts of the total error can be neglected in the error representation, proposing an error indicator
which then serves as the basis for an adaptive mesh refinementscheme. A numerical example shows the efficiency
of the proposed error estimator and the mesh adaptation scheme.

1 INTRODUCTION

The standard semi-discrete approach in finite element computations in structural dynamics con-
sists of the spatial discretization with finite elements andthe time integration of the resulting
system of ordinary differential equations. Both discretization steps contribute to the total dis-
cretization error of the numerical solution. Thus, the total discretization error can be split into
the spatial discretization errores(x, t) and the time integration erroret(x, t):

e(x, t) = u(x, t) − uh,k(x, t)

= (u(x, t) − uh(x, t))
︸ ︷︷ ︸

+ (uh(x, t) − uh,k(x, t))
︸ ︷︷ ︸

= es(x, t) + et(x, t)

(1)

Hereinu(x, t) denotes the exact solution of the continuous equation of motion, uh(x, t) is
the exact solution of the spatially discretized problem anduh,k(x, t) the numerical solution
obtained by the applied time integration scheme. As the timeintegration error is in most cases
far smaller than the error due to the spatial discretizationour contribution is restricted to the
error estimation of the spatial discretization error. Herewe focus on the estimation of the spatial
discretization error in a particular quantity of interest.For this so-called goal-oriented error
estimation an adjoint or dual problem is introduced. The dual problem is a backward problem
in time and describes the spatial and temporal transport of the error. For the mathematical
foundation of goal-oriented error estimation we refer to Becker and Rannacher [2], Bangerth
and Rannacher [1] and Oden and Prudhomme [7].



The spatial discretization is performed by use of ’Solid-Shell’-Elements with bilinear ansatz-
functions, see e.g. [6]. Since low order shell elements suffer from transversal shear locking the
well-known assumed strain approach (ANS) [4] is used. The ANS-method is a mesh dependent
reduction of the compatible strain field:

εANS = Rh(ε(u)) with ε(u) =
1

2
(Gradu + GradT u) (2)

For a proper incorporation of this modificaton into the errorestimation procedure we refer to
[3, 8].

The paper is organized as follows. First suitable error representation formulas which are the
basis of the error estimation are derived. Then the standardapproach of goal-oriented error esti-
mation using the full dual backward problem is described andtested with a numerical example.
Then a simplified error estimator is derived which is taken asthe basis for a mesh adaptation
scheme. The simplified error estimator and the mesh adaptation are also tested with the same
numerical example as the standard error estimator.

2 ERROR REPRESENTATION

For brevity we will restrict the following derivations to the equation of motion without damping.
Damping terms could however easily be introduced into the error equations. The variational
form of the exact problem can be stated as:

ρ0(ü, w) + a(u, w) = Fu(w) ∀w ∈ W (3)

with a(u, w) =

∫

B0

ε(u) : C : ε(w)dV,

(ü, w) =

∫

B0

ü · wdV,

Fu(w) =

∫

B0

ρ0b · wdV +

∫

∂BN

t · wdA

and initial conditions at timet = 0. The semi-discrete equation applying low order element
with assumed strains reads:

ρ0(üh, wh) + ah(uh, wh) = Fu(wh) ∀wh ∈ W h (4)

with ah(uh, wh) =

∫

B0

εANS(uh) : C : εANS(wh)dV,

i.e. for the stiffness term the mesh dependent modification 2has to be applied. Since in the
semi-discrete solution a mesh dependent bilinear formah(·, ·) is used the exact solution is in
general not a solution of the discrete problem, i.e.:

ρ0(ü, wh) + ah(u, wh) 6= Fu(wh) ∀wh ∈ W h, (5)

Therefore for finite elements with assumed strains the well-known Galerkin-orthogonality con-
dition does not hold [3]. In order to construct suitable error representations the weak form of



the differential equation of the spatial discretization error is needed. There are now two ways
to construct the weak form. One is to define the weak form of thedifferential equation by use
of the unmodified bilinear forma(·, ·) the second option is to apply the mesh dependent bilin-
ear formah(·, ·) for the error equation. Since both alternatives are used forthe following error
estimators both strategies shall be briefly presented. Botherror representations are based on the
weak form of the residual:

Ru(w) = Fu(w)−ρ0(üh, w)−ah(uh, w) = ρ0(ü, w)+a(u, w)−ρ0(üh, w)−ah(uh, w) (6)

2.1 Error representation based on the unmodified problem

In order to formulate the weak form of the error equation by means of the unmodified bilinear
form a(·, ·) equation (6) is reformulated as follows:

Ru(w) = ρ0(ü, w) − ρ0(üh, w) + a(u, w) − a(uh, w) (7)

+ a(uh, w) − ah(uh, w)
︸ ︷︷ ︸

−Rc(w)

Herein the consistency termRc(w) = ah(uh, w) − a(uh, w) denotes the part of the resid-
ual arising from the modification of the bilinear form in the discrete variational problem (4).
Equation (7) can now be transformed into the weak form of the spatial discretization error:

ρ0(ëS, w) + a(eS, w) = Ru(w) + Rc(w) ∀w ∈ W (8)

We now introduce the exact solutionz of the so-called dual or adjoint problem as test function
for the error equation (8) while the dual problem itself is generally defined as:

ρ0(z̈, w) + a∗(z, w) = Fz(w) ∀w ∈ W (9)

The dual problem runs backward in time and the initial conditions are therefore defined at
t = tn. In our casea∗(z, w) = a(z, w) holds. The partial integration of (8) over the time
domain yields the following identity:

[ρ0(ėS, z) − ρ0(eS, ż)]0 +

tn∫

0

Ru(z) + Rc(z)dt (10)

= [ρ0(z, ėS) − ρ0(ż, eS)]tn +

tn∫

0

Fz(eS)dt

Equation (10) is arranged such that the dual solutionz serves as weighting function of the
discretization error on the left hand side of the equation and occurs as trial function with the
weighting functioneS on the right hand side. Therefore the right hand side of equation (10) is
used for the appropiate definition of the dual problem while the left hand side is employed for
the error estimation.

We now choose a homogeneous dual problem , i.e.Fz(w) = Fz(eS) = 0 and assume homo-
geneous initial conditions for the primal problem, i.e.eS(x, 0) = ėS(x, 0) = 0. Equation (10)
then reduces to:

tn∫

0

Ru(z) + Rc(z)dt = [ρ0(z, ėS) − ρ0(ż, eS)]tn (11)



The right hand side of equation (11) is now used to define the initial conditions of the dual
problem with regard to the quantity of interest. We restrictourselves to the estimation of single
point displacements. If we want to control the error in the displacements at pointxi in direction
j we can define the quantity of interest

Q(u) = (u(x, tn), δj(xi)) (12)

by use of the Dirac delta functionδj(xi). The error in the displacement component of interest
is then defined as:

E(u, uh) = Q(u) − Q(uh) = (u(x, tn) − uh(x, tn)
︸ ︷︷ ︸

eS(x,tn)

, δj(xi)) = (eS, δj(xi)) (13)

Consequently, settingz(tn) = 0 equation (13) together with the right hand side of equation (11)
yields the definition of the initial velocities of the dual problem.

−ρ0(ż(tn), w) = (δj(xi, tn), w) ∀w ∈ W (14)

With this specification of the dual problem the error representation applying the left hand side
of equation (11) reads:

E(u, uh) =

tn∫

0

Ru(z) + Rc(z)dt =

tn∫

0

Fu(z) − ρ0(üh, z) − a(uh, z)dt (15)

An equivalent error representation can also be derived by using the velocities of the dual prob-
lem (9) as testfunction. This yields different initial conditions of the dual problem which might
be easier to evaluate for a different quantity of interest, such as local stresses.

Equation (15) will serve as basis for the error estimation insection 3.1.

2.2 Error representation based on the modified problem

As an alternative to equation (8) the weak form of the differential equation of the spatial dis-
cretization error can be formulated applying the mesh dependent modification. This yields a
mesh dependent dual problem which also applies the assumed strain modification. The cor-
responding error representation can now be derived in the same fashion as in the preceding
section.

For our purpose it is more suitable to use the velocitiesż of the homogeneous dual problem as
weighting function. Then the partial integration of the modified error equation yields the second
identity:

E(u, uh) = [ρ0(ėS, ż) + ah(eS, z)]0 +

tn∫

0

Ru(ż) + Rc(ż)dt (16)

= [ρ0(ż, ėS) + ah(z, eS)]tn ,

which will serve as the basis for the error estimation in section 3.2. Settinġz(tn) = 0 the initial
displacements of the dual problem attn for the estimation of a single point displacement read:

ah(z(tn), w) = (δj(xi), w) ∀w ∈ W (17)



That means the dual problem is reduced to a static problem at the timetn. Since for the deriva-
tion of the initial conditions of the dual problem the mesh dependent modifications (2) have to
be taken into account the present error representation seems to be suitable if the dual problem
shall be computed on the same mesh as the primal problem.

3 ERROR ESTIMATION

3.1 Error estimation with full backward integration

The usual approach in goal oriented error estimation is the numerical evaluation of an error
representation formula. Here we take equation (15). Since the residualRu(zh) = 0 ∀zh ∈ W h

the dual problem cannot be computed on the same spatial discretization as the primal problem.
Furthermore in order to capture the consistency part of the error a suitable approximation of
Rc(z) is needed. One option is to compute the dual problem on the same mesh with higher
order interpolation, see e.g. [1, 5]. In our case we introduce a reference mesh with mesh size
H = h

2
and introduce the dual problem:

ρ0(z̈H , wH) + aH(zH , wH) = Fz(wH) ∀wH ∈ W H 0 ≤ t ≤ tn. (18)

The error representation is then replaced by the approximation:

E(u, uh) ≈

tn∫

0

Fu(zH) − ρ0(üh, zH) − aH(uh, zH)dt (19)

which can be written in the discrete formulation as the sum over all time steps. Here, as a suit-
able choice the time integral is replaced by a one-point quadrature rule, i.e. the dual-weighted
residual has to be computed in the middle of each time step∆t. The error estimator then reads:

E(u, uh) ≈
n∑

j=1

∆tj ·

(
nel∑

i=1

(pH , zH)Bi
− (üh, zH)Bi

− aH(uh, zH)Bi

)

j− 1

2

(20)

HereinpH denotes the interpolation of the external forces in the reference mesh.

3.1.1 Numerical example

The error estimator (20) shall now be tested with a numericalexample, now including damping.
We consider the hemisphere with a hole depicted in figure 1. The hemisphere is subjected to
two pairs of single forces, the temporal evolution of the forces is depicted in figure 2.

Time integration is performed with the standard Newmark algorithm with a constant time step
size∆t = 0.005. Due to symmetry only a quarter of the hemisphere is discretized with bilinear
Solid-Shell elements. For the error estimation two uniformmeshes are considered. The first
mesh consists ofnel,1 = 256 elements withndof,1 = 1632 degrees of freedom, mesh 2 consist
of nel,2 = 1024 elements withndof,2 = 6336 degrees of freedom. The reference solution is
computed with a uniform mesh withnel,ref = 16348 elements andndof,ref = 99072.



radius of hemisphere:R = 10
thickness: t = 0.04

radius of the hole: r = 3
modulus of elasticity: E = 6, 8 · 107

Poisson ratio: ν = 0, 3
density: ρ = 5

damping parameters: cm = 0, 0003
ck = 0, 0001

Fig. 1 Example: Hemisphere with hole
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Fig. 2 Hemisphere with hole: Loading function
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Fig. 3 Hemisphere with hole: vertical displacement of pointI for the different spatial dis-
cretizations

Figure 3 shows the vertical displacement of pointI for the two meshes and the reference solu-
tion.

Figures 4 and 5 show the estimated vs. the exact error in the quantity of interest. In both cases
the error estimation works rather well. Especially the temporal evolution of the error can be
well captured. Nevertheless there is a remarkable phase shift between the estimated and the
exact error, which mainly results from the phase error of thedual solution due to its numerical
approximation. As a consequence the error estimation is better for the finer mesh 2. The
main drawback of using the error estimator (20) is the nearlyunsurmountable numerical effort
which arises from the error estimation procedure. For each time tj for which the error shall be
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Fig. 4 Estimated vs. exact error in the displacement of pointI – coarse mesh (ndof,1 = 1632)
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Fig. 5 Estimated vs. exact error in the displacement of pointI – finer mesh (ndof,2 = 6336)

estimated the whole temporal coupling of the primal and the dual problem has to be carried out.
Furthermore the whole primal and dual problem has to be stored over the whole time domain
which results in huge memory requirements even for rather small numerical models.

The main issue of the following section is therefore the reduction of the numerical effort of the
error estimation procedure.

3.2 Error estimation without backward integration

In order to reduce the numerical effort of the error estimation procedure we first perform a
modal decomposition of the spatial discretization error. The exact solution can be stated in
modal form:

u(x, t) =
∞∑

i=1

U i(x) · fi(t) (21)

with U i(x) being the natural modes of the exact eigenvalue problem:

divσ(U) + ρω2U = 0. (22)

The corresponding representation of the discrete solutionreads:

uh(x, t) =

ndof∑

i=1

Uh
i (x) · fh

i (t), (23)



The total spatial discretization error can now be split in the following form:

eS(x, t) =

ndof∑

i=1

(
U i(x) − Uh

i (x)
)

︸ ︷︷ ︸

Ei(x)

·fh
i (t) + U i(x) ·

(
fi(t) − fh

i (t)
)

︸ ︷︷ ︸

eϕ,i

(24)

+

∞∑

i=ndof+1

U i(x) · fi(t),

which means that the total spatial discretization error consists of the errorsEi of the spatial
approximation of the natural modes, the phase errorsU i · eϕ,i due to the approximation of
the natural frequencies and the cut-off error of higher modes which are not included in the
numerical model. For suitably chosen meshes the cut-off error can usually be neglected.

A closer look at equation (24) shows that the phase error mainly depends on the time and that
the phase error might be dominant even if the natural frequencies are captured sufficiently.
Therefore, controlling the phase error usually yields overly fine spatial discretizations. The
numerical example in section 3.1 also exhibits that due to the phase error the maximum values
of the errors usually occur at points in time where the quantity of interest is nearly zero. For
practical applications it might be rather interesting to judge whether the spatial discretization is
suitable to represent the extreme values of the amplitudes of the quantity of interest.

So our approach is now to simply neglect the phase error in theerror representation. That means
we assume that the spatial discretization error can be restated as:

eS(x, t) =

ndof∑

i=1

Ei(x) · fh
i (t) (25)

In other words, we assume that the exact solution can be reached by a pure spatial enhancement
of the discrete solutionuh. Furthermore with the restriction in equation (25) we implicitly
assume that the temporal evolution of the spatial discretization error is known.

In the error estimation procedure in section 3.1 the backward integration and the numerical eval-
uation of the dual weighted residual was necessary since thetemporal distribution of the spatial
discretization error was unknown. Therefore the computable right hand side of the differential
equation of the error had to be used for the error estimation.The boundary conditions at time
tn have only been employed for the proper definition of the dual problem. Now in our case
the temporal distribution of the spatial discretization error is assumed to be known which ren-
ders the backward integration in time unnecessary. The error estimation can now be performed
simply on the basis of the boundary terms at timetn, i.e. we now employ the right hand side
of equation (16) not only for the proper definition of the dualproblem but also for the error
estimation. The error representation now reads:

E(u, uh) = [ρ0(ėS, z) + ah(eS, z)]tn (26)

Since we have to apply the same strain interpolation scheme for the dual as for the primal
problem we first compute the numerical solutionzh(tn) on the mesh of the primal problem.
Then we split the dual solution asz(tn) = zh(tn) + eZ(tn). The error representation for the
absolute value can then be formulated as:

|E(u, uh)| = |ρ0(ėZ , ėS) + ah(eZ , eS) + ρ0(żh, ėS) + ah(zh, eS)|tn (27)



SinceRc(zh) 6= 0 the last two terms in equation (27) do not vanish as in the caseof a standard
Galerkin-scheme. Neglecting the last two terms means that the consistency error will not be
captured with the error estimator. Nevertheless the application of Cauchy-Schwarz inequality
to equation (27) would yield a huge overestimation of the consistency parts of the error, see e.g.
Diez, Morana and Huerta [3]. Fortunately, the numerical examples in [3] show that an adaptive
scheme which is based solely on the error estimation withoutthe consistency error is suitable
to reduce the total discretization error. Therefore we neglect the consistency part of the error in
the following and obtain the simplified error indicator:

|E(u, uh)| ≈ ρ0||ėS||L2
· ||ėZ ||L2

+ ||eS||a,h · ||eZ ||a,h (28)

with theL2-norm of the errors in the velocities and the mesh dependent energy norms of the er-
rors in the displacements of the dual and primal problem. If we now restrict the error estimation
to displacements of single points the velocity parts vanishand only the strain parts remain in the
error estimation procedure. The mesh dependent energy norms of the errors are now estimated
by use of the well-known error estimator by Zienkiewicz and Zhu [11] which is based on re-
covered stresses. For the evaluation of the Zienkiewicz-Zhu error estimator the mesh dependent
modifications have to be considered:

||eS||a,h =





∫

B0

(σ∗ − σ(εANS)) : C−1 : (σ∗ − σ(εANS))dV





1/2

(29)

Hereinσ∗ denotes a smoothed stress field which is obtained by employing the so-called super-
convergent patch recovery concept. In case of wave propagation problems the main characteris-
tics of the underlying physical problem lies in the temporaland spatial transport of the wave. So
neglecting the temporal transport of the error in wave propagation problems means that a main
part of important information is neglected. So the suitableapplication of the error estimator is
restricted to predominantly vibration type problems.

4 MESH ADAPTATION SCHEME

The simplified error estimator (28) shall now serve as basis of a mesh refinement scheme. We
use a hierarchical mesh refinement scheme, i.e. all meshes throughout the computation contain
the first spatial mesh. To ensure compatible meshes transition elements are introduced at the
transition from coarser to finer discretized domains. The adaptive scheme is now as follows. At
each point in timetj at which a prescribed error tolerance is exceeded a mesh refinement is per-
formed. Then the current data is transfered onto the new meshand the computation continues.
The transfer of the data is done by use of the scheme proposed by Radovitzky and Ortiz in [9].
This procedure consists of two steps:

• geometric interpolation of the data at the beginning of the current time step at timetj−1

• computation of the state variables on the new mesh at the end of the time step (tj) by use
of the time integration scheme. This yields an admissible state at the end of the time step.



4.1 Numerical example

The mesh adaptation scheme is now applied to the hemisphere with hole which has already
been mentioned in section 3.1. The quantity of interest is once again the vertical displacement
of the pointI, see figure 1. The tolerance in our adaptive scheme for the quantity of interest
is etol = 4 · 10−4. Since the error estimator neglects parts of the error representation we can
expect an underestimation of the true error, i.e. the true error resulting from the mesh adaptation
scheme might be larger thanetol.
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Fig. 6 Hemisphere with hole: Evolution of the number of equations throughout the computation

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

t

u A
,r

ef

A B
C

D
E F

Fig. 7 Hemisphere with hole: reference solutionuA,ref of vertical displacement of pointI

mesh at A–ndof = 2216 mesh at B –ndof = 4754 mesh at C–F –ndof = 9996

Fig. 8 Hemisphere with hole: Sequence of adaptively generated meshes

Figure (6) shows the evolution of the numbers of equations throughout the computation; in fig-
ure 8 the corresponding adaptive meshes are depicted. One can see clearly the strong refinement
of the mesh in the region of the quantity of interest.

We are now interested if the simplified error estimator and the adaptive mesh refinement scheme
are suitable to improve the solution in the quantity of interest. Therefore the maximum values
of the displacements of pointI at the times A – F depicted in figure 7 are compared.



time uniform mesh uniform mesh adaptive meshes
ndof = 6336 ndof = 24960

uA,ref eA % eA % eA % FHG

A 0, 02174 1, 31 · 10−4 0, 6% 5, 4 · 10−5 0, 24% 4, 5 · 10−5 0, 20% 2216

B 0, 04209 4, 52 · 10−4 1, 1% 1, 75 · 10−4 0, 4% 2, 9 · 10−4 0, 7% 4754

C 0, 0601 9, 6 · 10−4 1, 6% 3, 5 · 10−4 0, 6% 5, 6 · 10−4 0, 9% 9996

D 0, 075 1, 78 · 10−3 2, 4% 6, 7 · 10−4 0, 9% 9, 6 · 10−4 1, 3% 9996

E 0, 086 3, 11 · 10−3 3, 6% 1, 13 · 10−3 1, 3% 1, 3 · 10−3 1, 6% 9996

F 0, 093 4, 7 · 10−3 5, 0% 1, 63 · 10−3 1, 7% 1, 7 · 10−3 1, 8% 9996

Tab. 1 Hemisphere with hole: Comparison of the error in the amplitudes of the vertical dis-
placement of pointI for two uniform meshes and for the adaptive scheme

Table 1 shows the comparison of the errors for two uniform meshes with6336 and24960 de-
grees of freedom and for the adaptive scheme. The maximum number of degrees of freedom of
the adapted meshes is9996 and the error in the quantity of interest is comparable to theerror
for the finer uniform mesh.

time uniform mesh –ndof = 24960 adaptive mesh –ndof = 9996
uA,ref eA % eA %

A 0, 02174 5, 4 · 10−5 0, 24% −6, 3 · 10−5 0, 3%

B 0, 04209 1, 75 · 10−4 0, 4% −1, 0 · 10−4 0, 3%

C 0, 0601 3, 5 · 10−4 0, 6% −1, 2 · 10−4 0, 2%

D 0, 075 6, 7 · 10−4 0, 9% −7, 8 · 10−5 0, 1%

E 0, 086 1, 13 · 10−3 1, 3% −2, 1 · 10−5 0, 02%

F 0, 093 1, 63 · 10−3 1, 7% 1, 1 · 10−4 0, 1%

Tab. 2 Hemisphere with hole: Comparison of the error in the amplitudes of the vertical dis-
placement of pointI for a uniform mesh withndof = 24960 and for the computation of
the whole problem with the last adaptive mesh withndof = 9996

If we now take the last mesh of the adaptive procedure and restart the computation with this
mesh we obtain a solution which is rather close to the reference solution which has been com-
puted on a mesh with99072 degrees of freedom.

5 CONCLUSIONS

This present contribution deals with goal-oriented error estimation and mesh-adaptivity in struc-
tural dynamics. Two error estimation techniques have been presented. Besides the standard goal
oriented error estimation a strongly simplified error estimator which neglects the phase error due
to the spatial discretization has been considered. Insteadof solving the complete dual problem
in time only a static problem has to be solved which results ina very efficient error estimation
procedure. This simplified error estimator was used as the basis of an adaptive mesh refinement
scheme. The numerical example shows that the simplified error estimator – within its limitation
to vibration type problems– seems to be a suitable tool for the generation of efficient spatial
discretizations.
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