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Abstract

In an explicit time integration algorithm, the most time-consuming part of an analysis is the

computation of the internal nodal force vector. An implementation concept for element routines

for volumetric shell – so-called Solid-Shell – elements based on the application of the symbolic pro-

gramming tool AceGen, a plug-in for the computer algebra software Mathematica is presented.

Symbolic implementation means that vector and matrix operations and differentiations can be per-

formed symbolically in order to generate program code, which supports the implementation, reduces

programming effort and helps to avoid programming errors almost completely. The program code

is generated in Fortran and simultaneously optimized automatically, which leads to very efficient

routines compared to manually implemented code.

1 Explicit Time Integration

Explicit time integration is commonly used in finite element analysis and perfectly suited to highly
dynamic applications, e.g. crash or impact. The efficiency of the time integration scheme on global
level is based on the application of diagonalized mass matrices; as a consequence the computation of the
accelerations at the current time step

a
n = M
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int,n) (1)

involves only vector operations. However, the time step size is limited to a critical value, consequently
transient analyses require a high number of time steps. This is where efficiency in the handling of the
operations for force calculations in each step plays the dominant role. In every time step, the internal
forces f

int,n have to be integrated over all elements, thus a dominant part of the required CPU-time is
spent on element level.

2 Solid-Shell Elements

The concept of Solid-Shell Finite Elements as presented e. g. in [1] provides a shell formulation with full 3D
capabilities and displacement degrees of freedom only. In this contribution, isoparametric curved Solid-
Shell elements are used with bi-linear/ bi-quadratic interpolation in membrane and linear interpolation
in thickness direction. For the discretization of the initial geometry, this leads to
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where nip is the number of in-plane nodes. The upper and lower nodal locations are described by

the vector Xi =
[

Xiu Xil

]T
, the interpolation is performed linearly in thickness direction with the

interpolation matrix Θ(ζ). The in-plane interpolation is achieved in the present case with linear (nip =
4) or quadratic (nip = 9) Lagrangian shape functions. According to the isoparametric concept, the
displacements are interpolated with the same shape functions.

As is commonly known, pure displacement element formulations lead to artificial stiffness effects
– the so-called locking phenomena. In order to reduce locking, recent contributions (see e. g. [2, 3])
suggest reduced integration rules in combination with stabilization techniques for Solid-Shell elements.
The formulations presented in this contribution are programmed with standard (full) integration rules
and locking phenomena are treated using the methods of ‘Assumed Natural Strains’ (ANS) [4, 5] and
‘Enhanced Assumed Strains’ (EAS) [6, 7]. The ANS method is based on the evaluation of strains at
special assembling points together with an interpolation in order to treat geometrical locking effects such
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time = 0.00 s time = 0.15 s

Solid-Shell
subroutine

contact
subroutine

CPU-time relative

manually manually 3202 s 100.00 %

manually AceGen 3103 s 96.91 %

AceGen manually 309 s 9.65 %

AceGen AceGen 207 s 6.46 %

Figure 1: impact of a thin elastic plate on a rigid sphere – CPU-times for different element routines

as shear or membrane locking. The compatible strain field, which also shows a material locking effect,
controlled by the Poisson-ratio is then enhanced by introducing additional degrees of freedom – the
so-called EAS parameters – which are condensed out by local equation solving.

3 Efficient Implementation

An efficient implementation of the element routines especially the mentioned computation of the residual
force vector is achieved in the current project, using the specific programming tool AceGen [8], a plug-in
for the computer algebra software Mathematica. The advantage of such tools is – after a first glance
– the straight forward and extremely fast generation of element program variations due to the use of
e.g. symbolic differentiation of equations and the error-free code development at the same time. As the
generated code is automatically optimized, a very efficient implementation can be achieved. Comparison
of manually programmed and automatically optimized element code within the in-house FE program lead
to a reduction of the necessary CPU-time of up to 90 % for several numerical examples.

4 Numerical Example

The impact of a thin elastic plate on a rigid sphere is simulated using fully integrated linear Solid-Shells in
order to show the speed-up, achieved by the application of symbolic programming. The element routines
as well as a ‘Mortar’-type penalty contact formulation have been implemented both manually and with
AceGen. Figure 1 shows one state of the dynamic simulation and a table containing the numerical effort
for the different simulations of a 20 × 20 × 1 element mesh which requires approximately 50 000 time
steps. The high efficiency of the implemented routines can be reached without any manual improvement
of the program code, as AceGen simultaneously optimizes the code regarding the operations. It has to be
noted that – as expected – the incorporation of the EAS-method slows down the performance considerably,
thus only very few parameters should be taken. Further investigations on this example, which cannot be
discussed here in detail, show the advantage of the quadratic geometry interpolations, especially at large
deformations when the geometry has to be correctly captured e. g. for stability problems.

5 Conclusions and Outlook

The implementation concept using symbolic programming with AceGen is perfectly suited for element
development in the context of explicit time integration as it allows simplified and error-free programming
and provides highly efficient program routines. Further element formulations – especially standard shell
elements with linear and quadratic geometry and displacement interpolations – are currently implemented.
Also a very promising application is the implementation of complex material models, as here the advantage
of automatic differentiation is particularly interesting.
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