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Model Problem

Analysis of boundary value problem of linear thermoelastic and lin-

ear thermoviscoelastic material behavior of a one-dimensional bar

element with length L = 1m.

∂ΩD for u, ∂ΩN for T ∂ΩN for u and T

L

u0, T0 F(t)

Linear thermoelastic material behavior

Linear balance of momentum:

ρü = Eu
′′
− β(T − T0)

′

Heat conduction equation in full coupling:

ρcṪ = ρr + kT
′′
− Tβε̇

Linear thermoviscoelastic material behavior

Linear balance of momentum:

ρü = Eu
′′
− β(T − T0)

′ +
1

3
(µ1 + 2µ2) ε̇

′

Heat conduction equation:

ρcṪ = ρr + kT
′′
− Tβε̇ +

1

3
(µ1 + 2µ2) ε̇

2

Basics of thermoviscoelastic material model

Mechanical stress: σ = σe + σd (cf. Abali [1])

Elastic stress: σe = Eu′
− β(T − T0)

Dissipation stress: σd = 1

3
(µ1 + 2µ2)ε̇ with viscoelastic material

parameters µ1 and µ2 (cf. Abali [1])

Numerical Model

Spatial discretization: Bubnov-Galerkin FEM with isoparametric

concept

Temporal discretization: Implicit Midpoint Rule

Simulation Results

Simulation of linear thermoelastic and thermoviscoelastic material

behavior for a starting deflection of 0.1m evenly distributed across

bar element. No external energy is added to the system.

Dirichlet boundary ∂ΩD:

u(x = 0, t) = ū = 0

Neumann boundary ∂ΩN:

u
′(x = L, t) = F(t) = 0,

T
′(x = 0, t) = T

′

0(t) = 0,

T
′(x = L, t) = T

′

0(t) = 0

Initial values: T0 = 293.15K, u0(L) = 0.1m

Linear thermoelastic material behavior

For heat conduction equation in full coupling, energy conserving

formulation can be achieved

Energy difference between time steps consistently below New-

ton tolerance of eps = 10−6

Full coupling
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Simplified coupling (Tβε̇ → T0βε̇) and weak coupling (Tβε̇ → 0)

of heat conduction equation: energy conservation not possible

Simplified coupling
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Weak coupling
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Heat conduction equation in full coupling:

deformation ⇒ temperature change

Weak coupling: deformation has no effect on temperature

Full coupling
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Weak coupling
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Linear thermoviscoelastic material behavior

Energy conserving formulation is achieved for full coupling

Effect viscoelasticity: kinetic energy transforms into internal en-

ergy in form of heat ⇒ displacement is dampened, temperature

increases
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