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® Higher drawing viscosity yields smaller crack growth rate
o E }A” > () m Stress distribution without second stress peak (cf. Kambour [1])
) | | | ® Variation of process zone length /. due to different rates of craze
o 3 viscoelastic stretching : : :
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Solt) - relaxed fibril length - £(#) - deformed fibril length m Extension ratio as function of stress in active zone (cf. Lauter-
n, - fibril viscosity 1o - drawing viscosity wasser and Kramer [3])
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® Pinching of fibrils during crack tip closure
Three characteristic times related to: ® Viscoplastic bulk material model (e.g. Boyce) to account for in-
@ fibril defo = n,/ E,, drawing 7 = 1,/ E> and loading period T teraction between crazing and shear yielding
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