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Abstract

In this work, within the framework of the Mindlin-Reissner plate

theory, a novel Petrov-Galerkin Enhanced Assumed Strain (EAS)

element formulation is developed. For this purpose, the Petrov-

Galerkin method is employed, in which the test and trial functions

are approximated differently. The foundation for the novel formu-

lation is the EAS plate element by Simo and Rifai [3], as well as

the Petrov-Galerkin EAS formulation for two-dimensional elasticity

by Pfefferkorn and Betsch [2]. The combination of both methods

is developed and investigated concerning its ability to produce a

mesh-independent formulation.

EAS for Plates by Simo and Rifai
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Kinematics
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Hu-Washizu 3-field formulation
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Enhancement of the shear strain

γ = ∇w −Θ + γ̃

Equilibrium
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Petrov-Galerkin Finite Element Discretization

Basic idea: different shape functions for test and trial functions

Lagrangian shape functions for the test function

Metric shape functions in skew coordinates for the trial function

according to Xie et al. [4]

Discrete enhanced shear strain and its virtual counterpart
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Elimination of the Locking Modes

Problem: transverse shear locking for distorted meshes

Locking modes have polynomial form

Conditions: patch test and orthogonality of shear stress and

enhanced shear strain → use of Legendre polynomials as basis

for interpolation matrices for the enhanced shear strain

Locking can be eliminated with the right choice for E and Ẽ

Resulting stiffness matrix depends on nodal coordinates

→ strong mesh dependency expected

Mesh Distortion Test

Example of a simply supported rectangular plate with an con-

stant area load
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Petrov-Galerkin EAS

Three nodes are shifted at angles of 45°

Strong mesh sensitivity as expected

Same result as ANS element of Bathe and Dvorkin [1] for regular

mesh (s = 0)

Conclusion: mesh independence cannot be achieved
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