1. **Aufgabe** (ca. 27 % der Gesamtpunktzahl)

Berechnen Sie alle Lagerreaktionen und Gelenkkräfte des oben dargestellten räumlichen Systems.

Gegeben: \(l, F, q = 4 \frac{F}{l} \)
Musterlösung - 1. Aufgabe

Freischnitt:

Gleichgewicht:
I:
\[\rightarrow \sum F_{ix} = 0 : \quad F + B + G_x - A = 0 \]
\[\uparrow \sum F_{iy} = 0 : \quad G_y = 0 \]
\[\downarrow \sum F_{iz} = 0 : \quad G_z - C = 0 \]
\[\rightarrow \sum M_x^{(G)} = 0 : \quad C \cdot \frac{1}{2} l = 0 \]
\[\uparrow \sum M_y^{(G)} = 0 : \quad A \cdot \frac{1}{2} l - F \cdot \frac{1}{4} l = 0 \]
\[\downarrow \sum M_z^{(G)} = 0 : \quad - A \cdot \frac{1}{2} l + F \cdot \frac{1}{2} l + B \cdot \frac{1}{2} l = 0 \]

II:
\[\rightarrow \sum F_{ix} = 0 : \quad D_x - G_x - 2F = 0 \]
\[\uparrow \sum F_{iy} = 0 : \quad D_y + 3F - G_y = 0 \]
\[\downarrow \sum F_{iz} = 0 : \quad D_z + 4F - G_z = 0 \]
\[\rightarrow \sum M_x^{(D)} = 0 : \quad M_x^D - G_x \cdot \frac{1}{2} l + 4F \cdot \frac{1}{2} l = 0 \]
\[\uparrow \sum M_y^{(D)} = 0 : \quad M_y^D - G_y \cdot l = 0 \]
\[\downarrow \sum M_z^{(D)} = 0 : \quad M_z^D + G_x \cdot \frac{1}{2} l + G_y \cdot l - 3F \cdot l + 2F \cdot l = 0 \]

Auflösen:

1. \(G_x = 0, \)
2. \(G_y = 0, \)
3. \(G_z = 0, \)
4. \(C = 0, \)
5. \(A = \frac{1}{2} F, \)
6. \(B = -\frac{1}{2} F, \)
7. \(D_x = 2F, \)
8. \(D_y = -3F, \)
9. \(D_z = -4F, \)
10. \(M_x^D = -2F \cdot l, \)
11. \(M_y^D = 0, \)
12. \(M_z^D = F \cdot l. \)
2. **Aufgabe** (ca. 18 % der Gesamtpunktzahl)

Gegeben sei das oben abgebildete Fachwerk.

Bearbeiten Sie folgende Aufgabenteile:

a) Beurteilen Sie das Tragwerk hinsichtlich der statischen Bestimmtheit.

b) Bestimmen Sie die Lagerreaktionen an den Knoten A und B.

c) Bestimmen Sie die Stabkräfte der Stäbe 1-7.

Gegeben: F, a
Musterlösung - 2. Aufgabe

a) Fachwerk aus Dreiecken aufgebaut und statisch bestimmt gelagert.

b)

\[\sum M_A = 0 = 4a \cdot B + 3a \cdot F - 2a \cdot 2F - 4a \cdot 2F \]
\[= 4a \cdot B - 9 \cdot F \]
\[\rightarrow B = \frac{9}{4} F \]

\[\sum F_H = 0 = A_H + B - 4 \cdot F \]
\[\rightarrow A_H = \frac{9}{4} F + \frac{16}{4} F = \frac{7}{4} F \]

\[\sum F_V = 0 = A_V - F \]
\[\rightarrow A_V = F \]

c) Ritterschnitt-Verfahren für Stäbe \(S_1 \) - \(S_3 \):

\[\sum M_C = 0 = a \cdot A_V + a \cdot S_3 \]
\[\rightarrow S_3 = -A_V = -F \]

\[\sum F_V = 0 = A_V + S_3 + \frac{2a}{\sqrt{5}a} S_1 + \frac{2a}{\sqrt{5}a} S_2 \]
\[\rightarrow S_1 = -S_2 \]
\[
\sum F_H = 0 = A_V + \frac{a}{\sqrt{5}a} S_1 - \frac{a}{\sqrt{5}a} S_2 = \frac{7}{4} F - \frac{2a}{\sqrt{5}a} S_2
\]
\[
\rightarrow S_2 = \frac{7\sqrt{5} F}{8}
\]
\[
\rightarrow S_1 = -\frac{7\sqrt{5} F}{8}
\]

Knotenpunkt-Verfahren für Stäbe $S_4 - S_7$:

An Knoten B:
\[
\sum F_H = 0 \quad \rightarrow \quad S_7 = -B = \frac{-9}{4} F \quad \text{(siehe a))}
\]
\[
\sum F_V = 0 \quad \rightarrow \quad S_6 = 0
\]

An Knoten D:
\[
\sum F_V = 0 = -F + \frac{2a}{\sqrt{5}a} S_4 - \frac{2a}{\sqrt{13}a} S_5 \quad \rightarrow \quad S_4 = -\frac{\sqrt{5}}{2} F - \frac{\sqrt{5}}{\sqrt{13}} S_5
\]
\[
\sum F_H = 0 = -2F + \frac{9}{4} F - \frac{a}{\sqrt{5}a} S_4 - \frac{3a}{\sqrt{13}a} S_5
\]
\[
= -\frac{1}{4} F - \frac{a}{\sqrt{5}a} \left(-\frac{\sqrt{5}}{2} F - \frac{\sqrt{5}}{\sqrt{13}} S_5 \right) - \frac{3a}{\sqrt{13}a} S_5
\]
\[
= \frac{3}{4} F + \frac{1}{\sqrt{13}} S_5 - \frac{3}{\sqrt{13}} S_5
\]
\[
\rightarrow S_5 = \frac{3\sqrt{13} F}{8}
\]
\[
\rightarrow S_4 = -\frac{\sqrt{5}}{2} F - \frac{\sqrt{5}}{\sqrt{13}} \frac{3\sqrt{13}}{8} F = \frac{-7\sqrt{5}}{8} F
\]
3. **Aufgabe** (ca. 28 % der Gesamtpunkte)

Für das dargestellte Tragwerk unter der Belastung q und cF sind die folgenden Aufgabenteile zu bearbeiten:

a) Bestimmen Sie alle Lagerreaktionen und Gelenkkräfte.

b) Bestimmen Sie den Faktor c (vgl. Skizze) so, dass das Einspannmoment an der Stelle A verschwindet.

c) Bestimmen Sie für $c = 1$ die Funktion des Biegemomentenverlaufes im Bereich A-G-B.

d) Skizzieren Sie für $c = 1$ die Verläufe von Normalkraft, Querkraft und Biegemoment unter Angabe der wesentlichen Ordinaten für den Bereich A-G-B-C in die beigefügte Vorlage ein.

Gegeben: $a, q, F = qa$
Vorlage zur 3. Aufgabe, d)

\[N \]
\[Q \]
\[M \]
Musterlösung - 3. Aufgabe

a)

Am rechten Teilsystem:

\[\sum M(G) = 0 = C \cdot 2a - c \cdot F \cdot a \quad \Rightarrow \quad C = \frac{1}{2} c \cdot F = \frac{1}{2} c \cdot qa \]

\[\sum F_V = 0 = -G_V + c \cdot F - C \quad \Rightarrow \quad G_V = c \cdot F - \frac{1}{2} c \cdot F = \frac{1}{2} c \cdot F = \frac{1}{2} c \cdot qa \]

\[\sum F_H = 0 \quad \Rightarrow \quad G_H = 0 \]

Am linken Teilsystem:

\[\sum F_H = 0 \quad \Rightarrow \quad A_H = 0 \]

\[\sum F_V = 0 = A_V + qa - G_V \quad \Rightarrow \quad A_V = \frac{1}{2} c \cdot F - qa = qa \left(\frac{1}{2} c - 1 \right) \]

\[\sum M(A) = 0 = M_A + qa \cdot \frac{a}{2} - G_V \cdot a \]

\[\Rightarrow \quad M_A = \frac{1}{2} c \cdot F \cdot a - \frac{1}{2} qa^2 = \frac{1}{2} qa^2 \left(c - 1 \right) \]

b)

\[M_A \perp 0 \Leftrightarrow \quad \frac{1}{2} qa^2 \left(c - 1 \right) = 0 \]

\[\Leftrightarrow \quad c = 1 \]
Abschnitt 1, A-G: $(0 \leq x \leq a)$

\[\sum M_x = 0 = M_1(x) + qx \cdot \frac{1}{2}x + A_V \cdot x - M_A \]
\[\iff M_1(x) = -\frac{1}{2}qx^2 - \left(\frac{1}{2}qa - qa \right) \cdot x + 0 \]

\[\iff M_1(x) = -\frac{1}{2}qx^2 + \frac{1}{2}qa \cdot x = -\frac{1}{2}qx(x - a) \]
\[\sum F_V = 0 = Q_1(x) + qx + A_V \]
\[\rightarrow Q_1(x) = -qx + \frac{1}{2}qa \]
\[\sum F_H = 0 \rightarrow N_1 = -A_H = 0 \]

Abschnitt 2, G-B: $(a \leq x \leq 2a)$

\[\sum M_x = 0 = M_2(x) + qa \cdot \left(\frac{1}{2}a + x - a \right) + A_V \cdot x - M_A \]
\[\iff M_2(x) = -qa x + \frac{1}{2}qa^2 - \left(\frac{1}{2}qa - qa \right) \cdot x + 0 \]
\[\iff M_2(x) = -\frac{1}{2}qa x + \frac{1}{2}qa^2 = -\frac{1}{2}qa(x - a) \]
\[\sum F_V = 0 = Q_2(x) + qa + A_V \]
\[\rightarrow Q_2(x) = -qa + \frac{1}{2}qa = -\frac{1}{2}qa \]
\[\sum F_H = 0 \rightarrow N_2 = -A_H = 0 \]
N \ [qa] \\
\left(\text{aus GGW an Punkt } C: \ - \frac{l}{\sqrt{2}} \ C \rightarrow \right) \ \sqrt{\frac{2}{4}}

Q \ [qa] \\
\left(\text{aus GGW an Punkt } C: \ + \frac{l}{\sqrt{2}} \ C \rightarrow \right) \ \sqrt{\frac{2}{4}}

M \ [qa^2] \\
\left(\text{kein Knick} \right)
4. Aufgabe (ca. 27 % der Gesamtpunkte)

Eine Kiste (Schwerpunkt S, Gewicht G) soll eine schiefe Ebene (Neigungswinkel α) hinaufgezogen werden. Dazu greift an der Kiste die Kraft F unter dem Winkel β an. Der Haftkoeffizient zwischen der Kiste und der schießen Ebene beträgt μ_0 (vgl. Abbildung). Nehmen Sie an, dass die Kiste im Punkt B nicht abhebt.

Bearbeiten Sie folgende Punkte:

a) Welche Kraft F ist gerade notwendig, um die Kiste entlang der Ebene nach oben in Bewegung zu setzen?

b) Unter welchem Winkel β^* wird die Kraft F aus Aufgabenteil a) minimal?

c) Wie groß darf α maximal sein, damit die Kiste für $\mu_0 = 1$ und $\beta = \beta^*$ im Punkt B nicht abhebt?

Gegeben: G, a, μ_0

Hinweis: $0^\circ \leq \beta < 90^\circ$
Musterlösung - 4. Aufgabe

a) \[F \cdot \cos \beta = G \cdot \sin \alpha \]
\[G \cdot \cos \alpha \]
\[a \]
\[H \]
\[a/2 \]
\[N_a \]
\[N_B \]
\[H_a \]
\[H_B \]

Haftbedingung: \[H = \mu_0 \cdot N \quad \Rightarrow \quad H_A + H_B = \mu_0 (N_A + N_B) \] (1)

\[\sum F \parallel = 0 : \quad H_A + H_B = F \cdot \cos \beta - G \cdot \sin \alpha \] (2)

\[\sum F \perp = 0 : \quad N_A + N_B = G \cdot \cos \alpha - F \cdot \sin \beta \] (3)

(2) und (3) in (1): \[F \cdot \cos \beta - G \cdot \sin \alpha = \mu_0 (G \cdot \cos \alpha - F \cdot \sin \beta) \]
\[\Leftrightarrow \quad F (\cos \beta + \mu_0 \sin \beta) = G (\mu_0 \cos \alpha + \sin \alpha) \]
\[\Rightarrow \quad F = G \cdot \frac{\sin \alpha + \mu_0 \cos \alpha}{\cos \beta + \mu_0 \sin \beta} \]

b) \(F(\beta) \) wird minimal, wenn der Nenner \(g(\beta) = \cos \beta + \mu_0 \sin \beta \) maximal wird:
\[g'(\beta) = -\sin \beta + \mu_0 \cos \beta \quad g''(\beta) = -(\cos \beta + \mu_0 \sin \beta) \]
\[g'(\beta^*) = 0 \quad \Leftrightarrow \quad \sin \beta^* = \mu_0 \cos \beta^* \quad \Rightarrow \quad \beta^* = \arctan \mu_0 \]
\[g''(\beta^*) < 0 \quad \Leftrightarrow \quad \beta^* \in [0^\circ, 90^\circ) \text{ und ...} \]
\[\Rightarrow \quad F(\beta) \text{ wird im Bereich } \beta^* \in [0^\circ, 90^\circ) \text{ minimal für } \beta^* = \arctan \mu_0. \]

c) Für \(\mu_0 = 1 \) gilt: \(\beta^* = \arctan 1 = 45^\circ \quad \Rightarrow \quad F(\beta^*) = \frac{G}{\sqrt{2}} (\sin \alpha + \cos \alpha) \)

Bedingung, damit Kiste in Punkt B nicht abhebt: \(N_B \geq 0 \):

\[\sum M_A = 0 = a \cdot G \cdot \cos \alpha - \frac{a}{2} \cdot G \cdot \sin \alpha - 2a \cdot N_B - 2a \cdot F \cdot \sin 45^\circ + \frac{a}{2} \cdot F \cdot \cos 45^\circ \]
\[\Leftrightarrow \quad 2N_B = G \left(\cos \alpha - \frac{1}{2} \sin \alpha \right) + \sqrt{2} F \left(-1 + \frac{1}{4} \right) \]
\[= G \left(\cos \alpha - \frac{1}{2} \sin \alpha - \frac{3}{4} \sin \alpha - \frac{3}{4} \cos \alpha \right) = G \left(\frac{1}{4} \cos \alpha - \frac{5}{4} \sin \alpha \right)^\perp \geq 0 \]
\[\Leftrightarrow \quad \cos \alpha \geq 5 \sin \alpha \quad \wedge \quad G > 0 \]
\[\Rightarrow \quad \alpha \leq \arctan \frac{1}{5} = 11.3^\circ \]