
Institut für Mechanik	Prüfung in
Prof. DrIng. habil. P. Betsch	Statik starrer Körper
Prof. DrIng. habil. Th. Seelig	6. März 2019

1. Aufgabe: (ca. 25 % der Gesamtpunkte)

a) Beurteilen Sie die Tragwerke $\mathbf{I} - \mathbf{III}$ hinsichtlich der statischen Bestimmtheit (mit Begründung!).

Die restlichen Aufgabenteile sind nur am Tragwerk ${\bf I}$ zu bearbeiten:

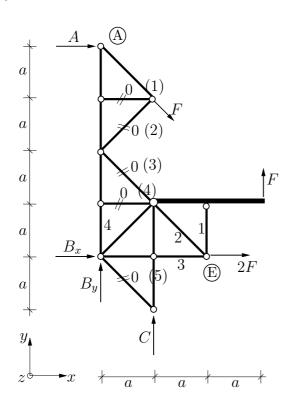
- b) Bestimmen Sie alle Nullstäbe (mit Begründung).
- c) Berechnen Sie die Stabkräfte $S_1,\,S_2$ und $S_3.$
- d) Berechnen Sie die Auflagerreaktionen im Punkt \mathbf{A} , sowie die Stabkraft S_4 .

Gegeben: a, F

Musterlösung - 1. Aufgabe

a) Statische Bestimmtheit

Tragwerk	N	Votw	endig		- Hinreichend		
Hagwerk	3n	=	r -	+ v	- mmeichend		
I	$3 \cdot 2$	=	4	2	Nicht kinematisch	\Rightarrow	Statisch bestimmt
II	$3 \cdot 2$	\neq	3	2	Entfällt	\Rightarrow	Statisch unbestimmt
III	$3 \cdot 2$	\neq	5	2	Entfällt	\Rightarrow	Statisch unbestimmt
mit							

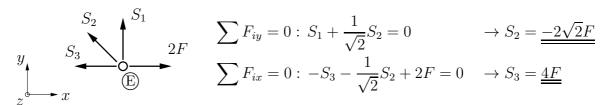

n: Anzahl der starren Körper

r: Lagerreaktionen

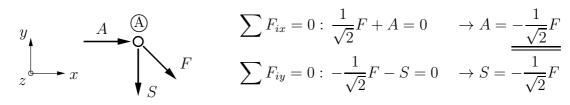
v: Verbindungsreaktionen

Anmerkung: Die Aufgabe kann alternativ mittels der Fachwerk-Betrachtung behandelt werden.

b) Nullstäbe


- Drei Stäbe an unbelastetem Knoten. Wirkungslinie zweier Stäbe identisch:
 - (1), (3), (4)
- Zwei Stäbe an belastetem Knoten. Wirkungslinie der Last verläuft in Richtung eines Stabes:
 - (2), (5)

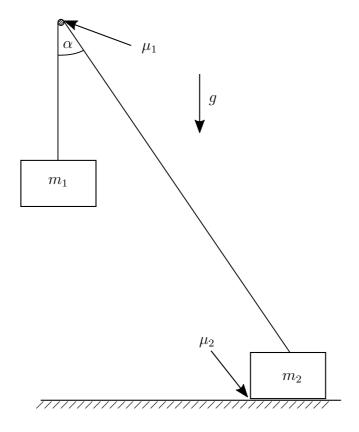
c) S_1 via Freischnitt des Balkens:


$$\sum M_{iz}^{D} = 0 : -S_{1} \cdot a + F \cdot 2a = 0 \longrightarrow S_{1} = \underline{2F}$$

$$\sum M_{iz}^{D} = 0 : -S_1 \cdot a + F \cdot 2a = 0 \qquad \to S_1 = \underline{2F}$$

 $S_2 \& S_3$ via Knotenpunktverfahren in E:

d) Auflagerkraft A via Knotenpunktverfahren in (A):

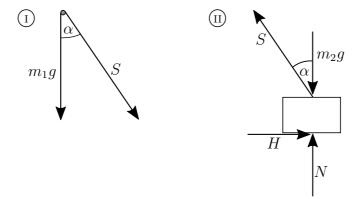


Stabkraft S_4 :

$$S_4 = S = \frac{1}{\sqrt{2}}F$$

Institut für Mechanik	Prüfung in
Prof. DrIng. habil. P. Betsch	Statik starrer Körper
Prof. DrIng. habil. Th. Seelig	6. März 2019

2. Aufgabe: (ca. 20 % der Gesamtpunkte)


Zwei Massen m_1 und m_2 sind wie skizziert durch ein Seil verbunden. Das Seil wird dabei an einem starren Lager mit Kreisquerschnitt und Haftbeiwert μ_1 umgelenkt.

- a) Wie groß muss das Verhältnis der Massen m_2/m_1 mindestens sein, damit Gleichgewicht herrscht?
- b) Welcher Winkel α ergibt sich im Sonderfall $\mu_2 = 0$ und wie lautet dann das kleinste erforderliche Massenverhältnis m_2/m_1 ?

Gegeben: g, μ_1, μ_2

Musterlösung - 2. Aufgabe

a) Freischnitt:

(I) Seilhaftung (Euler-Eytelwein-Gleichung):

$$m_1 g \le S e^{\mu_1(\pi - \alpha)} \quad \Leftrightarrow \quad S \ge m_1 g e^{-\mu_1(\pi - \alpha)}$$
 (1)

(II) Gleichgewicht:

$$\to: \quad H - \sin(\alpha)S = 0 \tag{2}$$

$$\uparrow: N + S\cos(\alpha) - m_2 g = 0 \quad \Leftrightarrow \quad N = m_2 g - S\cos(\alpha) \tag{3}$$

Haftbedingung:
$$H = \mu_2 N$$
 (Grenzfall) (4)

Einsetzen:

(3) in (4) in (2):

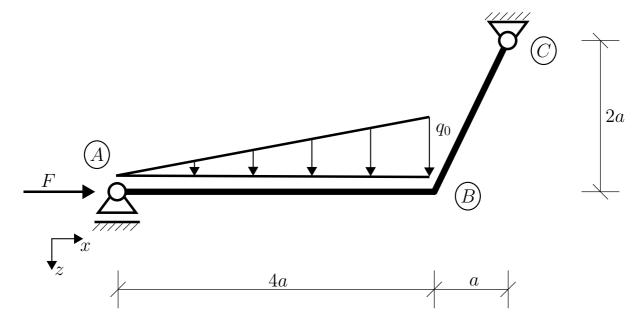
$$\mu_2 m_2 g - \mu_2 S \cos(\alpha) - S \sin(\alpha) = 0 \tag{5}$$

(1) in (5):

$$\mu_2 m_2 g - m_1 g e^{-\mu_1(\pi - \alpha)} \left(\mu_2 \cos(\alpha) + \sin(\alpha) \right) \ge 0$$

Auflösen:

$$\frac{m_2}{m_1} \ge e^{-\mu_1(\pi - \alpha)} \frac{\mu_2 \cos(\alpha) + \sin(\alpha)}{\mu_2}$$

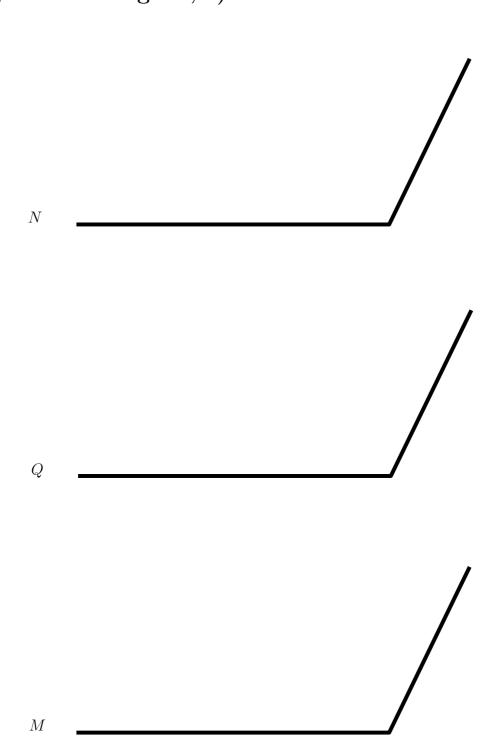

b) Im Fall $\mu_2 = 0$ (also H = 0) ergibt sich $\alpha = 0$. Daraus folgt $S \ge m_1 g e^{-\mu_1 \pi}$. Für die kleinste erforderliche Masse m_2 ist außerdem N = 0. Somit gilt im Gleichgewicht $m_2 g = S$.

Einsetzen der Seilkraft ${\cal S}$ (Grenzfall!) und Auflösen:

$$m_2 g = m_1 g e^{-\mu_1 \pi} \quad \Leftrightarrow \quad \frac{m_2}{m_1} = e^{-\mu_1 \pi}$$

Institut für Mechanik	Prüfung in
Prof. DrIng. habil. P. Betsch	Statik starrer Körper
Prof. DrIng. habil. Th. Seelig	6. März 2019

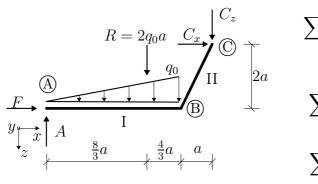
3. Aufgabe: (ca. 35 % der Gesamtpunkte)


Für das dargestellte Tragwerk unter der linear veränderlichen Streckenlast q(x) sowie der Einzelkraft F sind die folgenden Aufgabenteile zu bearbeiten:

- a) Bestimmen Sie die Lagerreaktionen in A und C.
- b) Bestimmen Sie die formelmäßigen Verläufe der Schnittgrößen M(x) und Q(x) im Bereich A-B.
- c) Skizzieren Sie die Verläufe der Schnittgrößen N, Q und M im Bereich A-C in der **beigefügten Vorlage** und geben Sie die wesentlichen Ordinaten an.

Gegeben: $a, q_0, F = q_0 a$

Institut für Mechanik	Prüfung in
Prof. DrIng. habil. P. Betsch	Statik starrer Körper
Prof. DrIng. habil. Th. Seelig	6. März 2019


Vorlage zur 3. Aufgabe, c)

Musterlösung - 3. Aufgabe

a) Freischnitt

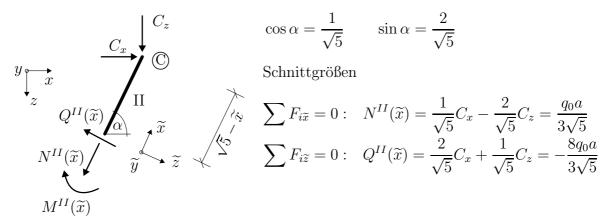
Lagerreaktionen

b) Verläufe (Bereich I) via Integration

$$q^{I}(x) = \frac{q_0}{4a}x$$

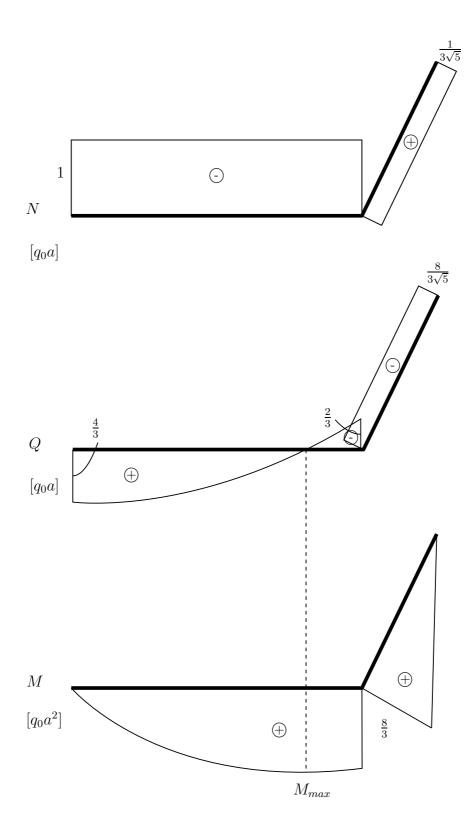
$$Q^{I}(x) = -\frac{q_0}{8a}x^2 + C_1$$

$$M^{I}(x) = -\frac{q_0}{24a}x^3 + C_1x + C_2$$

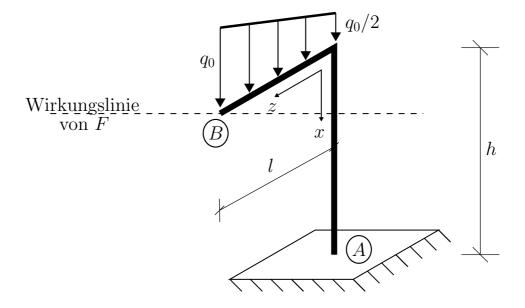

Randbedingungen

$$Q^{I}(x=0) = A$$
 $\rightarrow C_{1} = \frac{4}{3}q_{0} a$
 $M^{I}(x=0) = 0$ $\rightarrow C_{2} = 0$

$$\Rightarrow Q^{I}(x) = \frac{-\frac{q_0}{8a}x^2 + \frac{4}{3}q_0 a}{-\frac{q_0}{24a}x^3 + \frac{4}{3}q_0 a x}$$


c) Schnittgrößen im Bereich II

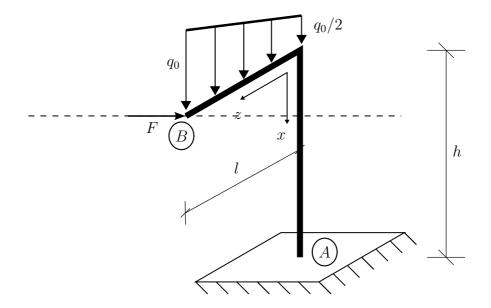
Geometrie


$$\cos \alpha = \frac{1}{\sqrt{5}}$$
 $\sin \alpha = \frac{2}{\sqrt{5}}$

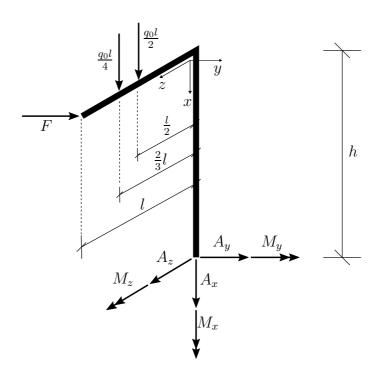
$$\sum F_{i\widetilde{x}} = 0: \quad N^{II}(\widetilde{x}) = \frac{1}{\sqrt{5}} C_x - \frac{2}{\sqrt{5}} C_z = \frac{q_0 a}{3\sqrt{5}}$$
$$\sum F_{i\widetilde{z}} = 0: \quad Q^{II}(\widetilde{x}) = \frac{2}{\sqrt{5}} C_x + \frac{1}{\sqrt{5}} C_z = -\frac{8q_0 a}{3\sqrt{5}}$$

Institut für Mechanik	Prüfung in
Prof. DrIng. habil. P. Betsch	Statik starrer Körper
Prof. DrIng. habil. Th. Seelig	6. März 2019

4. Aufgabe: (ca. 20 % der Gesamtpunkte)


Ein im Punkt A eingespannter Rahmen sei durch eine trapezförmige Streckenlast (siehe Skizze) sowie eine im Punkt B angreifende und in positiver y-Richtung (Rechtssystem!) wirkende Kraft F belastet.

- a) Zeichnen Sie die Kraft F in die Skizze ein.
- b) Berechnen Sie die Lagerreaktionen im Punkt A.


Gegeben: h, l, q_0, F

Musterlösung - 4. Aufgabe

a) Skizze:

b) Freischnitt:

Gleichgewicht:

$$\sum F_x = 0: \underline{\underline{A_x = -\frac{3}{4}q_0l}} \qquad \sum M_x^A = 0: M_x - Fl = 0 \quad \Leftrightarrow \quad \underline{\underline{M_x = Fl}}$$

$$\sum F_y = 0: \underline{\underline{A_y = -F}} \qquad \sum M_y^A = 0: M_y + \frac{q_0l^2}{4} + \frac{q_0l^2}{6} \Leftrightarrow \underline{\underline{M_y = -\frac{5}{12}q_0l^2}}$$

$$\sum F_z = 0: \underline{\underline{A_z = 0}} \qquad \sum M_z^A = 0: M_z - Fh = 0 \quad \Leftrightarrow \quad \underline{\underline{M_z = Fh}}$$