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In the present work we use the mortar finite element method for the coupling of nonconforming discret-
ized sub-domains in the framework of nonlinear elasticity. The mortar method has been shown to pre-
serve optimal convergence rates (see Laursen (2002) [25] for details) and is variationally consistent.
We show that the method can be applied to isogeometric analysis with little effort, once the framework
of NURBS based shape functions has been implemented. Furthermore, a specific coordinate augmentation
technique allows the design of an energy–momentum scheme for the constrained mechanical system
under consideration. The excellent performance of the redesigned mortar method as well as the
energy–momentum scheme is illustrated in representative numerical examples.
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1. Introduction

Several decades ago, Lagrangian shape functions have been
established as preferred basis for the numerical approximation of
partial differential equations by means of the finite element meth-
od. In contrast, NURBS based shape functions, emanating from the
field of Computer Aided Design (CAD), have been established as a
vitally important tool for designers. Isogeometric analysis (see
[23,8]) has been developed to link both worlds, using NURBS as a
basis for Galerkin-based discretization schemes.

For the past few years, a wide range of problems have been
addressed in the framework of isogeometric analysis, demonstrat-
ing the advantages of this approach. Isogeometric analysis has been
applied to the field of fluid mechanics [2], structural analysis
[9,10,28], shell formulations [3], phase field models [13] and contact
problems [33,29]. For a comprehensive survey see Cottrell et al. [7].

In this work, we apply domain decomposition methods to isogeo-
metric analysis. These methods allow to subdivide bodies into sev-
eral sub-domains, which can be meshed independently, using
either Lagrangian or NURBS based shape functions. Additionally,
h-, p- or k-refinement methods can be applied to single sub-domains
with no regard to other sub-domains. In particular, we use mortar
finite element mesh tying methods to join the dissimilarly meshed
regions. Originally developed in Bernadi et al. [4], several enhance-
ments have been developed during the past years (see
[34,35,12,31]). Furthermore, highly advanced techniques in the
ll rights reserved.
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context of iterative solvers have been developed in recent years
(see lecture notes in [1]).

Numerical time integration schemes that facilitate algorithmic
conservation of total energy as well as the momentum maps are of
major importance for a wide range of applications, where the lack
of algorithmic energy conservation can cause numerical blow-up
behavior. In fact, energy–momentum conserving time-stepping
schemes provide enhanced numerical stability in the field of non-
linear structural- and thermoelastic dynamics (cf. [14,5,19,24]).
They have been applied successfully to contact [26,6,27,15,17,21,
20] as well as to domain decomposition problems [18].

An outline of the present work is as follows. A summary of the
basic equations in the context of continuum mechanics is given in
Section 2. In particular, we derive the strong and the weak form of
the problem. In Section 3 we apply the spatial discretization using
NURBS based shape functions and derive a redesigned mortar
method based on the discrete virtual work. To this end, we verify
frame-indifference properties of the modified constraints. The
equations of motion and the energy–momentum scheme are dealt
with in Section 4. Representative numerical examples are pre-
sented in Section 5. Eventually, conclusions are drawn in Section 6.

2. Formulation of the problem

In this section we provide a short outline of the fundamental
equations. We consider a general non-linear mechanical system,
artificially subdivided into several sub-domains i,1 occupying the
space BðiÞ0 � R3 in the reference configuration. The deformation map-
1 Without loss of generality we restrict ourself to a two body problem, i.e. i 2 {1,2}.
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2 If convenient and unique we make use of the summation convention for repeated
indices.
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ping uðiÞðXðiÞ; tÞ : B0 � ½0; T� ! R3, where [0,T] denotes the time inter-
val under consideration, characterizes the current position of the
material point XðiÞ 2 BðiÞ0 at time t. The linear momentum is given
by p ¼ q0v , where q0 denotes the density in the reference configu-
ration and v : B0 � ½0; T� ! R3; v ¼ _u ¼ @u=@t the material velocity.
The material surfaces @BðiÞ0 are partitioned into the Dirichlet bound-
ary CðiÞu , the Neumann boundary CðiÞr and the internal interface CðiÞd be-
tween the sub-domains. We require that the three portions CðiÞu ;C

ðiÞ
r

and CðiÞd satisfy

CðiÞu [ CðiÞr [ CðiÞd ¼ @B
ðiÞ
0 ð1Þ

and

CðiÞu \ CðiÞr \ CðiÞd ¼ ;; ð2Þ

on each sub-domain. Furthermore, we assume the existence of a
strain energy function WðCðiÞÞ : BðiÞ0 � ½0; T� ! R, where
CðiÞ : BðiÞ0 � ½0; T� ! R3�3 denotes the right Cauchy-Green deforma-
tion tensor, given by CðiÞ ¼ FðiÞ;T FðiÞ and
FðiÞ : BðiÞ0 � ½0; T� ! R3�3; FðiÞ ¼ DuðiÞ denotes the deformation gradi-
ent. The Lagrangian form of the balance of linear momentum is gi-
ven by

_uðiÞ ¼ q�1
0 pðiÞ;

_pðiÞ ¼ DivðPðiÞÞ þ BðiÞ;
ð3Þ

supplemented by the boundary conditions

uðiÞ ¼ �uðiÞ on CðiÞu � ½0; T�;
PðiÞNðiÞ ¼ �T ðiÞ on CðiÞr � ½0; T�;

ð4Þ

where P ¼ 2FrCWðCÞ denotes the first Piola–Kirchhoff stress ten-
sor, NðiÞ the outward unit normal vector in the reference configura-
tion of body i;BðiÞ the applied body forces and �T ðiÞ the prescribed
tractions. To define the interface conditions on CðiÞd we introduce a
pseudo-traction vector tðiÞ, defined in terms of force per unit unde-
formed area. To fulfill the balance of linear momentum across the
interface, we require tð1Þ ¼ tð2Þ on CdðiÞ � ½0; T�. Eq. (3) represents
the strong formulation of the problem, whereas the weak formula-
tion reads

Gðu; duÞ ¼
X

i

GðiÞðu; duÞ ¼ 0; ð5Þ

where du are admissible test functions. Setting the L2-inner product
on BðiÞ0 in the usual fashionZ
B
ðiÞ
0

ð�Þ � ð�ÞdV ðiÞ ¼: h�; �iðiÞ and
Z
@B
ðiÞ
0

ð�Þ � ð�ÞdCðiÞ ¼: h�; �iCðiÞ ð6Þ

the contribution of each sub-domain i to the virtual work takes the
form

GðiÞðu; duÞ ¼ hqR €u; duiðiÞ þ hP;rXðduÞiðiÞ � hqR
�B; duiðiÞ

� h�T; dui
CðiÞr
� ht; dui

CðiÞ
d
; ð7Þ

where ht; dui
CðiÞ

d
denotes the virtual work contributions of the cou-

pling tractions. Additionally, we require that the balance of linear
momentum across the interfaceX

j

�ht; duiCðiÞ
d
¼ htð1Þ; ðduð1Þ � duð2ÞÞiCð1Þ

d
¼ 0; ð8Þ

has to hold at all times t 2 ½0; T�.

3. Spatial discretization

Inspired by developments in the context of isogeometric analy-
sis (see Cottrell et al. [7] and the references therein for a compre-
hensive survey of this topic) we apply NURBS based shape
functions for the approximation of displacement based finite
elements in space
uðiÞ;h ¼
X

A2xðiÞ
RA;ðiÞqðiÞA ; duðiÞ;h ¼

X
A2xðiÞ

RA;ðiÞdqðiÞA ; ð9Þ

where

RA;ðiÞ ¼ Ri;j;k
p;q;rðnÞ ¼

Ni;pðnÞMj;qðgÞLk;rðfÞwi;j;kPn
î¼1

Pm
ĵ¼1

Pl
k̂¼1N î;pðnÞM ĵ;qðgÞLk̂;rðfÞwî;̂j;̂k

: ð10Þ

Here, p, q, r denotes the order of the non-rational B-Spline shape
functions N, M and L, recursively defined as follows

Ni;p ¼
n� ni

niþp � ni

Ni;p�iðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1
Niþ1;pþ1ðnÞ; ð11Þ

beginning with

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1;

0 otherwise:

�
ð12Þ

The definition for M and L follows analogously. Furthermore, wi;j;k

are NURBS weights, for details see Piegl and Tiller [30]. The global
index A for the shape functions is connected to the indices
i 2 ½1; . . . ;n�; j 2 ½1; . . . ;m� and k 2 ½1; . . . ; l� in the parameter space.
In particular, a connectivity array is used for implementation, sim-
ilar to the location matrix defined in Hughes [22], such that the
shape functions RA;ðiÞðnÞ are associated with the control points
A 2 xðiÞ ¼ f1; . . . ; nðiÞnodeg, where, nðiÞnode denotes the total number of
control points. Hence we can define a configuration vector and
the variation thereof

qðiÞðtÞ ¼

qðiÞ1 ðtÞ

..

.

qðiÞ
nðiÞ

node

ðtÞ

2
6664

3
7775; dqðiÞðtÞ ¼

dqðiÞ1 ðtÞ

..

.

dqðiÞ
nðiÞ

node

ðtÞ

2
6664

3
7775: ð13Þ

At last, three so called knot vectors N ¼ fn1; n2; . . . ; nnþpþ1g;
H ¼ fg1;g2; . . . ;gnþpþ1g and I ¼ ff1; f2; . . . ; fnþpþ1g represent a set

of coordinates in the parameter space, which provide a definition
for finite elements, such that a point A : i; j; k! ni;gj; fk in the param-
eter space addresses a node in the physical space, i.e. a corner of an
element.

Remark. Details on the characteristics of the isogeometric
approach such as continuity, explicit representation of specific
shape functions and repeated knots, mesh generation and refine-
ment can be found in Cottrell et al. [7] and the references therein.
We will deal with this specific class of shape functions in a general
way, such that the following domain decomposition method can be
applied without restrictions to all possible NURBS solids. Note that
the control points qðiÞA can be dealt with analogues to the nodes of
Lagrangian elements. We only have to take care about the fact that
the control points can be, but do not have to be part of the
geometry, i.e. of the curve, surface or solid.
3.1. Discrete virtual work

Now, the semi-discrete form of the virtual work reads2

Ghðq; dqÞ ¼
X

i

dqðiÞA � MAB;ðiÞ€qðiÞB þ fðiÞ;int;A þ fðiÞ;ext;A þ fðiÞ;d;A
h i

ð14Þ

where the elements of the mass matrix are

MAB;ðiÞ ¼ q0RA;ðiÞ;RB;ðiÞ
D EðiÞ

ð15Þ

and the internal and external forces take the form



Fig. 1. Cook’s membrane. The black lines indicate the mesh, while the blue lines
and the red stars illustrate the control mesh and the control points respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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fðiÞ;int;A ¼ rRA;ðiÞ � SðiÞ;rRB;ðiÞ
D EðiÞ

qðiÞB ð16Þ

and

fðiÞ;ext;A ¼ � RA;ðiÞ;q0
�BðiÞ

D EðiÞ
� RA;ðiÞ; �TðiÞ
D E

CðiÞr
; ð17Þ

respectively. The second Piola–Kirchhoff stress tensor SðiÞ ¼
2@W=@CðiÞ;h is associated with the strain energy function

V ðiÞ;intðqðiÞÞ ¼ WðCðiÞ;hÞ;1
D EðiÞ

; ð18Þ

where

CðiÞ;h ¼ qðiÞA � q
ðiÞ
B rRA;ðiÞ � rRB;ðiÞ ð19Þ

Note that the derivative rRA can be calculated in a straightforward
manner

rRA ¼ ðJ�1ÞT @RA

@n
; J ¼ @u

h

@n
ð20Þ

and @RA=@n follows directly from (10). The last force contribution
fðiÞ;d;A in (14) will be dealt with in Section 3.3.

3.2. Discrete mesh-tying constraints

The goal of this section is to provide an adequate, mortar based
method for a nonconforming domain decomposition of NURBS
based solids. The discrete balance of linear momentum across the
interface reads

tð1Þ;h; duð1Þ;h � duð2Þ;h
� �� �

Cð1Þ
d
¼ 0; ð21Þ

where we have to define tð1Þ;h for NURBS based interfaces which are
usually of higher order. A brief discussion of higher order (in partic-
ular quadratic) interpolation in connection with mortar contact
methods can be found in Puso et al. [32] and in Fischer and Wrig-
gers [11], a detailed analysis can be found in Hauret and Le Tallec
[16]. In Hesch and Betsch [18,19] the shape functions of the under-
lying displacement approximation are used to interpolate the La-
grange multipliers. Optimal convergence for higher order NURBS
interpolation can only be achieved by using higher order interpola-
tion of the Lagrange multiplier field, i.e. a quadratic interpolation of
the Lagrange multipliers for cubic interpolation of the geometry.
Higher order NURBS interpolation of the Lagrange multiplier field
may become difficult, if the interface is not constructed by an open
knot vector. In that case, the interpolation of the interface depends
on a large set of control points, resulting in a large number of con-
straints which is inefficient and potentially overconstrained. A high-
er order Lagrangian interpolation is possible if additional nodes are
placed on the interface. Here, we restrict ourself to linear shape
functions due to the generality within the application, i.e. we can
apply it to arbitrary h-, p- and k-refined bodies.

Note that this approach is potentially underconstrained for ex-
tremely coarse meshes in conjunction with higher order NURBS. In
general, a one dimensional system has a knot vector with n + p + 1
entries which correlates in our approach with the number of La-
grange multipliers reduced by the overall number of multiplicities.

Four corner nodes of each surface element of the interface, inde-
pendent of the order of the underlying NURBS solid are given, such
that we can always apply a linear interpolation of the Lagrange
multipliers

tð1Þ;h ¼
X

A2 ~xð1Þ
NA

kA: ð22Þ

Here, NA : B ! R are linear Lagrangian shape functions associated
with the nodes A 2 ~xð1Þ, where ~xð1Þ denotes the set of element
nodes (not the control nodes) at the physical surface. Inserting
(22) in (21) yields

kA � nABdqð1ÞB � nACdqð2ÞC

� �
¼ 0; ð23Þ

where nAB and nAC are the mortar integrals, given by

nAB ¼ hNA;RBiCð1Þ
d
;

nAC ¼ hNA;RCiCð1Þ
d
:

ð24Þ

The NURBS parametrization
P

BRBqB and
P

CRCqC of the respective
interface surface can be derived from the adjacent volume element,
as shown in Temizer et al. [33].

Remark. The presented linear interpolation of the Lagrange mul-
tipliers can be used independent of the order of the NURBS. As a
result, the proposed method allows the combined use of Lagrang-
ian and NURBS based shape functions.
3.3. Evaluation of the mortar integrals

Next a segmentation process for the numerical evaluation of the
mortar integrals in (24) will be developed. To illustrate this pro-
cess, we utilize a 3d version of Cook’s membrane, shown in
Fig. 1. For details on the geometry and the mesh see Section 5.1.
The NURBS in this example are of order p, q, r = 2 and 5 � 5 � 5
control points are used to control 3 � 3 � 3 elements. Then we
decompose the membrane into two nonconforming discretized
parts by successively eliminating elements and applying an h-
refinement to the left part, such that this part consists of
2 � 4 � 4 elements. In contrast to that the right part consists of
1 � 3 � 3 elements, see Fig. 2. Note that there are different ways
to decompose a given CAD geometry. The geometry can be decom-
posed and then meshed independently, or we can mesh the whole
system and decompose the mesh afterwards. Since the last one is
more general and includes the former we focus on this approach.

Next, we have to split the internal surfaces into segments. Sev-
eral efficient and powerful segmentation routines have been devel-
oped in the past (see [31,32,18,20]), which can be modified with
little effort for NURBS based solids. To illustrate these modifica-
tions, we adapt the 4-step method in Hesch and Betsch [20]:



Fig. 2. Decomposed and partially refined Cook’s membrane.

Fig. 3. Segmentation of the interface.
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(1) Project orthogonally the nodes on the mortar side to the
opposing surface using the KTS algorithm developed in
Temizer et al. [33].

(2) Project orthogonally the nodes on the non-mortar side using
once again the KTS algorithm. Note that we do not project on
a projected mesh as in Hesch and Betsch [20] to simplify the
algorithm.

(3) Search for intersections between the edges. The algorithm in
Hesch and Betsch [20] can be adapted by using the NURBS
shape functions for the edges. Similar to the surfaces the
edges can be derived from the adjacent volume elements.

(4) Apply a Delaunay triangularization to each element on the
mortar side. The triangularization is related to the parameter
space, thus no modification is necessary.

In Fig. 3 the segmentation of the decomposed membrane is dis-
played. Note that the segmentation process runs independently of
any application of h-, p- or k-refinements, since we always obtain
surface elements with 4 corner nodes and 4 corresponding edges in
the physical space.

For each segment we obtain local coordinates n
ðjÞ
seg;K ;K 2 ½1;2;3�

in the parameter space for each surface j, defining the vertices of
the segment. Introducing linear, triangular shape functions MK a
linear transformation

nðjÞ;hseg ðgÞ ¼
X3

K¼1

MKðgÞnðjÞseg;K ; ð25Þ

can be applied to parametrize the interface. The mortar integrals for
each segment can now be calculated by insertion of (25) in (24).
Thus, we obtain for the segment contributions

njb ¼ Nj
nð1Þ;hseg ðgÞ
� �

Rb
nð1Þ;hseg ðgÞ
� �D E

Cð1Þ
d;seg

;

njf ¼ Nj
nð1Þ;hseg ðgÞ
� �

Rf
nð2Þ;hseg ðgÞ
� �D E

Cð1Þ
d;seg

:
ð26Þ

To apply a Gauss integration, the Jacobian Jseg of each segment is
required

Jseg ¼ A1 nð1Þ;hseg ðgÞ
� �

� A2 nð1Þ;hseg ðgÞ
� �			 			 det DnðgÞð Þ; ð27Þ

where AaðnÞ ¼
P

BRB
;aðnÞqB denotes the tangential vectors in the

reference configuration. Eventually, we obtain
njb ¼
Z
M

Nj
nð1Þ;hseg ðgÞ
� �

Rb
nð1Þ;hseg ðgÞ
� �

Jseg dg;

njf ¼
Z
M

Nj
nð1Þ;hseg ðgÞ
� �

Rf
nð2Þ;hseg ðgÞ
� �

Jseg dg:
ð28Þ

In a last step, we collect the segment contributions

Uj
e;seg ¼ njbqð1Þb � njfqð2Þf ; ð29Þ

of each element e and assemble them into a global vector of
constraints

UðqÞ ¼ Ae2�ð1Þ
[
seg

Uj¼1
e;seg

..

.

Uj¼2
e;seg

2
6664

3
7775; ð30Þ

where �(1) denotes all elements on Cð1Þd . For the implementation of
the assembly, a location array A ¼ LMðj; eÞ is needed to connect
the segment contributions to a specific constraint, for details see
Hesch and Betsch [17]. Note that the corresponding nodal force
vector fðiÞ;d;A follows from

dqðiÞA � f
ðiÞ;d;A ¼ dqðiÞA � rqA

UðqÞ � kA: ð31Þ
Remark 1. The physical position of the Gauss points on both
surfaces do not necessarily coincide with their orthogonal projec-
tions, although the corner nodes of the segments do. An alternative
solution relies on the evaluation of the orthogonally projected
Gauss points instead of the careful evaluation of the mortar
projections. More details on this discussion can be found in Puso
et al. [32].
Remark 2. As shown in Puso [31], warped meshes can not be
exactly integrated. Within our numerical tests, a 4 point Gauss
integration has shown to be sufficient, but the number of quadra-
ture points should be adjusted for higher order NURBS.
3.4. Reformulation of the mortar constraints

In this section we propose a reformulation of the mortar con-
straints following the development in Hesch and Betsch [18] to
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retain conservation of both linear and angular momentum. There-
fore, we decompose the Lagrange multipliers into normal and
tangential components

k ¼ kNnseg þ kaaa;seg; ð32Þ

where

aa;seg ¼
X

A

RA
;a nð1Þ;hseg ð�gÞ
� �

qA ð33Þ

and

nseg ¼
a1;seg � a2;seg

ka1;seg � a2;segk
ð34Þ

are evaluated at the mid-point �g of each segment. We assume that
the normal and the tangential vectors remain constant throughout
each segment, simplifying the evaluation of the mortar integrals.

The reformulated segment contributions of the mortar con-
straints are given by

�Uj
e;seg ¼

Uj
e;seg � a1

Uj
e;seg � a2

Uj
e;seg � n

2
64

3
75� �Uj;ref

e;seg; ð35Þ

where �Uj;ref
e;seg denotes the segment contributions of the mortar con-

straints evaluated in the reference configuration, computed once at
problem initialization. This ensures that the constraints are fulfilled
in the reference configuration. Note that if the mesh generation and
refinement does not produce any gaps between the sub-domains
and the position of the Gauss points on both surfaces coincide in
the physical space (cf. Remark 1 in Section 3.3), then �Uj;ref

e;seg ¼ 0.

3.5. Augmented coordinates

Guided by the development in Hesch and Betsch [19] we intro-
duce augmented coordinates dA which equal the normal vector
evaluated at each corner node of the elements, analogues to the La-
grange multipliers. To determine the value of the augmented coor-
dinates, we apply additional constraints3

Uaug ¼
dA � a1

dA � a2

dA � dA � 1

2
64

3
75 ð36Þ

and interpolate the augmented coordinates using the linear shape
functions introduced for the interpolation of the Lagrange
multipliers

dseg ¼
X

A2 ~xð1Þ
NAðnð1Þ;hseg ð�gÞÞdA: ð37Þ

The reformulated mortar constraints can be recast by employing
the augmented coordinates to obtain

~Uj
e;seg ¼

Uj
e;seg � a1

Uj
e;seg � a2

Uj
e;seg � dseg

2
64

3
75� �Uj;ref

e;seg; ð38Þ

where �Uj;ref
e;seg remains unchanged.

3.6. Frame-indifference of the mortar constraints

For the verification of frame-indifference, we consider rigid mo-
tions of the form
3 In contrast to previous developments we can now make use of the higher
continuity of the surface, such that the tangential vectors at the surface are uniquely
defined.
q]
A ¼ cþ QqA; ð39Þ

where c 2 R3 and Q2 SO(3) is a rotation tensor. It is easy to show
that one gets for the convective base vectors

a]
a ¼ Q

X
A

RA
;aqA ¼ Q aa ð40Þ

and

n] ¼ Qa1 � Qa2

kQa1 � Qa2k
¼ Q n: ð41Þ

Thus, for the constraints (35) follows immediately

�Uj
e;segðq]Þ ¼

Uj
e;seg � Q

T Qa1

Uj
e;seg � Q

T Qa2

Uj
e;seg � Q

T Qn

2
664

3
775� �Uj;ref

e;seg ¼ �Uj
e;segðqÞ; ð42Þ

provided thatX
b

njb �
X

f

njf ¼ 0 ð43Þ

is valid (for a detailed discussion see Puso [31]). With regard to (36)
and (38) it is obvious that

Uaugðq];dÞ ¼ Uaugðq;Q T dÞ ð44Þ

and

~Uj
e;segðq];dÞ ¼ ~Uj

e;segðq;Q
T dÞ: ð45Þ

For later use we substitute qA
� ¼ qA þ �l. Frame-indifference of the

constraints, i.e. ~Uj
e;segðq�;dÞ ¼ ~Uj

e;segðq;dÞ implies translational
invariance for arbitrary �. Consequently,

d
d�






�¼0

~Uj
e;segðq�;dÞ ¼ 0 ð46Þ

for any l 2 R3. Similarly, we substitute qA
� ¼ expð�l̂ÞqA, where

expðl̂Þ 2 SOð3Þ denotes the exponential map of a skew-symmetric
tensor l̂, such that l̂a ¼ l� a for arbitrary a 2 R3 and receive

d
d�






�¼0

~Uj
e;segðexpð�l̂Þq;dÞ � ~Uj

e;segðq; expð��l̂ÞdÞ ¼ 0; ð47Þ

where we have made use of the rotational properties in (45). Note
that the properties (46) and (47) hold for (36) as well.

4. Discretization in time

At last we deal with the discretization in time of the finite-
dimensional mechanical system under consideration. To this end
we cast the discrete version of (7) into the form

M€q ¼ �rVðqÞ � ðD1Uðq;dÞÞTk;
0 ¼ ðD2Uðq;dÞÞTk;
0 ¼ Uðq;dÞ:

ð48Þ

Here the operators D1 and D2 denote the derivative of the vector of
constraints Uðq;dÞwith respect to the first and the second slot. Fur-
thermore, q consists of the different sub-domain contributions of
ð13Þ1 and M consists of the contributions MAB,(i) corresponding to
dqðiÞA and qðiÞB . Similar, U and k are assembled from (36) and (38)
in conjunction with (30). Note that the reformulated constraints
(35) can be easily implemented using approach (48) by removing
the augmented coordinates and replacing the constraints. Next,
we apply an energy–momentum scheme (see [18]) as follows



4 The KTS method relies on an pointwise enforcement of the constraints.
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qnþ1 � qn ¼ Dtvnþ1=2;

Mðvnþ1 � vnÞ ¼ �Dt �rVðqn;qnþ1Þ � DtðD1Uðqnþ1=2;dnþ1=2ÞÞTknþ1;

0 ¼ ðD2Uðqnþ1=2;dnþ1=2ÞÞTknþ1;

0 ¼ Uðqnþ1;dnþ1Þ;
ð49Þ

where ð�Þnþ1=2 ¼ ½ð�Þn þ ð�Þnþ1�=2 denotes the mid-point configura-
tion for a typical time-step n! nþ 1 using a time-step size Dt.
�rVðqn;qnþ1Þ denotes the discrete gradient of the strain energy func-
tion in the sense of Gonzalez [14]. In fact, the time integration
scheme is not effected by the use of NURBS based shape functions,
such that we can follow the arguments in Hesch and Betsch [18] to
verify the conservation properties in a brief summary.

4.1. Conservation properties

4.1.1. Conservation of linear momentum
Assuming the absence of external forces we obtain for the linear

momentum map L within each time-step

l � ðLnþ1 � LnÞ

¼ �Dtl �
X
A2x

�rqA
Vðqn;qnþ1Þ þ rqA

Uðqnþ1=2;dnþ1=2Þknþ1

h i
: ð50Þ

For the first term on the right hand we receive

l �
X
A2x
rRA

 !
� Rh

n;nþ1;rRB

* +
qB;nþ1=2 ¼ 0: ð51Þ

Note that the discrete second Piola–Kirchhoff stress tensor reads

Rh
n;nþ1¼2DWðCh

nþ1=2Þ

þ
W Ch

nþ1

� �
�W Ch

n

� �
�DW Ch

nþ1=2

� �
: Ch

nþ1�Ch
n

h i
Ch

nþ1�Ch
n

			 			2 Ch
nþ1�Ch

n

h i
:

ð52Þ

For the second term follows

�Dtl �
X
A2x
rqA

Uðqnþ1=2;dnþ1=2Þknþ1 ¼ 0; ð53Þ

where we have made use of property (46).

4.1.2. Conservation of angular momentum
For the angular momentum map J follows analogously

l � ðJnþ1 � JnÞ ¼ �Dt
X
A2x

qA;nþ1=2

� �rqA
Vðqn; qnþ1Þ þ rqA

Uðqnþ1=2;dnþ1=2Þknþ1

h i
:

ð54Þ

The first term vanishes due to the skew-symmetry of
qA;nþ1=2 � qB;nþ1=2 and the symmetry of Rh

n;nþ1. For the second term
follows

l � ðJnþ1 � JnÞ ¼ �Dt
X
A2x

qA;nþ1=2 � $qA
Uðqnþ1=2;dnþ1=2Þknþ1

¼ Dtknþ1 �
X
A2x
ð$qA

Uðqnþ1=2;dnþ1=2ÞÞT q̂A;nþ1=2l

¼ �Dtknþ1 �
X

A2xð1Þ
ðrdA

Uðqnþ1=2;dnþ1=2ÞÞT d̂A;nþ1=2l

¼ Dtl �
X

A2xð1Þ
d̂A;nþ1=2$dA

Uðqnþ1=2;dnþ1=2Þknþ1 ¼ 0; ð55Þ

where we have taken (47) and (49)3 into account.
4.1.3. Conservation of energy
Eventually, we verify algorithmic conservation of energy. Scalar

multiplication of (49)2 by vnþ1=2 yields

vnþ1=2 �Mðvnþ1 � vnÞ ¼ �ðqnþ1 � qnÞ � �rVðqn;qnþ1Þ þ ðqnþ1

� qnÞ � ðD1Uðqnþ1=2;dnþ1=2ÞÞTknþ1; ð56Þ

where we have taken (49)1 into account. Due to the discrete gradi-
ent (52) we can recast the last equation as follows

1
2

vnþ1 �Mvnþ1 �
1
2

vn �Mvn ¼ �ðVðqnþ1Þ � VðqnÞÞ þ knþ1

� D1Uðqnþ1=2;dnþ1=2Þðqnþ1 � qnÞ: ð57Þ

For the last term we state that

D1Uðqnþ1=2;dnþ1=2Þðqnþ1 � qnÞ þ D2Uðqnþ1=2;dnþ1=2Þðdnþ1 � dnÞ
¼ Uðqnþ1;dnþ1Þ �Uðqn;dnÞ ¼ 0 ð58Þ

is valid, since the constraints are at most quadratic in q and d and
we end up with

Eðqnþ1;dnþ1Þ�Eðqn;dnÞ¼�knþ1 �D2Uðqnþ1=2;dnþ1=2Þðdnþ1�dnÞ¼0;

ð59Þ

where E ¼ 1=2v �Mvþ VðqÞ denotes the total energy.

5. Examples

5.1. Cook’s membrane

The first static example deals with a decomposed and partially
h-refined membrane structure, known as Cook’s membrane. In
particular we consider a 3d version of Cook’s membrane with con-
stant thickness h = 10. The initial mesh is shown in Fig. 1 consisting
of 3 � 3 � 3 quadratic elements whereas Fig. 2 shows the decom-
posed and refined mesh. The left part consists of 2 � 4 � 4 and
the right of 1 � 3 � 3 quadratic elements. The 4 � 6 � 6 and
3 � 5 � 5 control points of the sub-domains are equidistant dis-
tributed to simplify mesh generation. The knot vectors are

Nð1Þ ¼ ½0;0;0;1;2;3;3�;
Hð1Þ ¼ ½0;0;0;1;2;3;4;4;4�;
Ið1Þ ¼ ½0;0;0;1;2;3;4;4;4�;
Nð2Þ ¼ ½0;1;2;3;3;3�;
Hð2Þ ¼ ½0;0;0;1;2;3;3;3�;
Ið2Þ ¼ ½0;0;0;1;2;3;3;3�:

ð60Þ

Here, the upper index refers to the left (1) and to the right (2) sub-
domain. A compressible Neo-Hooke material model is applied with
the strain energy function

WðCÞ ¼ l
2
½tr ðCÞ � 3� þ k

2
ðlnðJÞÞ2 � l lnðJÞ; ð61Þ

where J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðCÞ

p
and l = 865.3846, k = 1298.1 are the corre-

sponding Lamé parameters. A Dirichlet boundary condition has
been applied to the left side, whereas a Neumann boundary condi-
tion has been applied to the right side of the membrane. In partic-
ular, a surface load acts with a constant load P = [0,�200,500] on
the specified surface. Fig. 4 displays the deformed configuration,
whereas Fig. 5 shows the distribution of the norm of the Cauchy
stresses of the left sub-domain. For comparison we have modified
the KTS method (see Temizer et al. [33]4) using Lagrange multipliers
instead of a penalty method and applied it to the problem at hand.
The stress distribution of the left sub-domain is displayed in Fig. 6.



Fig. 4. Deformed configuration of the membrane.

Fig. 5. Deformed configuration and stress distribution of the left sub-domain
(mortar method).

Fig. 6. Deformed configuration and stress distribution of the left sub-domain (KTS
method).

Fig. 7. Initial configuration for the patch test.
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Note that we have applied the Lagrange multipliers on the interface
of the right sub-domain, such that we used 3 � 16 multipliers for the
KTS as well as for the mortar method.

5.2. Patch test

The next static examples deals with a standard three dimen-
sional patch test. An exploded drawing of the reference configura-
tion is given in Fig. 7. The lower block is meshed using (2 � 2 � 2)
quadratic NURBS based elements, whereas the upper block is
meshed using 3 � 3 � 3 linear Lagrangian elements. The lower
block is fixed at the bottom, such that it can elongate in the x-
and y-direction, but is fixed in the z-direction, i.e. we should get
a uniform and homogeneous stress distribution. A constant pres-
sure field P = [0,0,�12000] is applied to the top of the upper block.
The material model and data are the same as in Section 5.1. Fig. 8
shows the von Mises stress distribution after the application of the
load to the upper body. The Lagrange multipliers are assigned to
the top surface, such that we deal with 3 � 16 multipliers. The
interface remains flat as expected.

5.3. L-shaped block

The last problem under consideration deals with an L-shaped
block, decomposed into two parts as shown in Fig. 9. The larger
part consists of 3 � 3 � 11 quadratic NURBS based elements, the
smaller part of 2 � 2 � 2 quadratic NURBS based elements using
overall 389 control points. An Ogden type material model

WðCÞ ¼ jb�2ðb lnðJÞ þ J�b � 1Þ þ
X

a

X
p

lp

ap
ð�kap

a � 1Þ ð62Þ

has been applied, where �ka ¼ J�1=3ka are modified principal
stretches. The corresponding material constants are



Fig. 8. Deformed configuration and stress distribution at the interface.

Fig. 9. Initial configuration of the L-shaped block.

Fig. 10. Snapshots of the motion at time t 2 f0;10;20g.
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Fig. 11. Total angular momentum over time.
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Fig. 12. Total energy over time.
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q0 ¼ 10;

l ¼ ½6:3 � 105;0:012 � 105;�0:1 � 105�;
a ¼ ½1:3;5:0;�2:0�;
b ¼ 9;

j ¼ 2 � 105;

ð63Þ

where q0 denotes the reference density. Furthermore, 40 mortar
segments and 60 Lagrange multipliers are used to enforce the
mesh-tying constraints. A sinusoidal normal pressure load has been
applied for the first second to the back and the front surface with
Pmax ¼ 1000. Apart from that, no other boundary conditions or
external fields have been applied, such that the L-shape can move
free in space. The whole time interval is set to [0,20] using a con-
stant time-step size of Dt = 0.1. Snapshots at successive points in
time are depicted in Fig. 10. The three components of angular
momentum plotted over time are shown in Fig. 11. As can be seen,
all three components are preserved after the initial loading phase.
Furthermore, Fig. 12 shows the total energy also plotted over time.
As expected, the total energy remains conserved after the initial
loading phase, i.e. the change in total energy remains below the
stop criterion of the Newton iteration 10�4.

6. Conclusions

In this work, we presented a newly designed mortar method for
domain decomposition problems in the context of isogeometric
analysis. To this end, we have redesigned the mortar integrals for
the application of NURBS based shape functions. An important fea-
ture of the proposed approach is the combined use of Lagrangian
and NURBS shape functions. This makes possible to apply isogeo-
metric analysis in a reasonable fashion and to use Lagrangian
shape functions if necessary.

Guided by previous developments in Hesch and Betsch [18] we
have applied a specific augmentation technique to achieve an
energy–momentum consistent formulation of the constrained
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mechanical system at hand. In particular, the presented approach
can be viewed as a straightforward extension of energy–momen-
tum schemes to isogeometric analysis, leading to a remarkably sta-
ble and robust time integration scheme.
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