Mehrskalenberechnungen bei inhomogenen Körpern Johann Bitzenbauer, Karl Schweizerhof

- Motivation
- Homogenisierung
- Mehrgittermethoden
- Composite Finite Elemente Strategie
 - Hierarchische Netzgenerierung
 - Mehrgitteralgorithmus
- Beispiele

Motivation

- Werkstoffe besitzen oft eine Mikrostruktur (periodisch/aperiodisch)
- wünschenswert für effektive makroskopische Beschreibung:
 - geringe Anzahl von Unbekannten
 - geringer Rechenaufwand
- Homogenisierung: im Linearen sehr effektiv, im Nichtlinearen sehr aufwendig
- Mehrgittermethoden: Problem der konsistenten Grobgitterkorrektur
- Lösungsmöglichkeiten: Grobgitter aus Homogenisierung
 - Grobgitter durch algebraischen Transferoperator
 - Grobgitter über Composite Finite Elemente Strategie

Literatur

Homogenisierung

- D. Cioranescu, P. Donato: An Introduction to Homogenization, Oxford lecture series in mathematics and its applications 17, Oxford University Press, 1999. → gute Einführung in die lineare Theorie
- G. Geymonat, S. Müller, N. Triantafyllidis: Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity, Archive for Rational Mechanics and Analysis 122, pp. 231-290, 1993. → Grundlegende theoretische Darstellung nichtlinearer Phänomene
- J. Schröder, C. Miehe: Stability problems in micro-macro-transitions: Analysis of elastic micro-structures, in: Trends in Computational Structural Mechanics (Eds.: Wall, W.A.; Bletzinger, K.-U.; Schweizerhof, K.), CIMNE Barcelona, pp. 218-227, 2001. → Umsetzung in FE und Diskussion

Homogenisierungsbasierte Mehrgitterverfahren

- N. Neuß: Homogenisierung und Mehrgitter, Dissertation, Universität Heidelberg, 1995.
- J. Fish, V. Belsky: Multigrid method for periodic heterogeneous media, Part 2: Multiscale modeling and quality control in multidimensional case, Computer methods in applied mechanics and engineering 126, pp. 17-38, 1995. → erste Arbeiten im Linearen, Konzept nicht auf nichtlineare Probleme übertragbar
- C.G. Bayreuther, C. Miehe: Homogenisierungsbasierte Mehrgitter-Transferoperatoren für nichtlineare heterogene Materialien, PAMM 3, pp. 248-249, 2003. → Knoten-/Patchweises Vorgehen, quasialgebraisches Mehrgitterverfahren

Literatur

Andere Mehrgitterverfahren für inhomogene Probleme

- W.L. Wan: Scalable and Multilevel Iterative Methods, Dissertation, University of California Los Angeles, 1998.
 → erste Arbeiten zur energieminimierenden Interpolation; systematischen Wahl der Grobgitterpunkte
- S.A. Sauter: Vergröberung von Finite-Elemente-Räumen, Habilitation, Universität Kiel, 1997. → systematische Wahl der Grobgitterpunkte, konzeptionell klarer Algorithmus
- W. Hackbusch, S.A. Sauter: Composite finite elements for problems containing small geometric details -Part II: Implementation and numerical results, Computing and Visualization in Science 1, pp. 15-25, 1997.
- W. Hackbusch, S.A. Sauter: Adaptive Composite Finite Elements for the Solution of PDEs containing non-uniformly distributed Micro-Scales, Matematicheskoe Modelirovanie 8, pp. 31-43, 1998.
- **R.** Warnke: Schnelle Löser für elliptische Randwertprobleme mit springenden Koeffizienten, Dissertation (Betreuung S.A. Sauter), Universität Zürich, 2003.

Hierarchische Netzgenerierung

- **F.J.** Deister: Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Berechnung von Strömungen um komplexe Konfigurationen, VDI-Verlag Düsseldorf, 2002.
 - \rightarrow gute Darstellung des Quadtree-/Octree-Algorithmus

Grundlagen der Homogenisierung

Einheitszelle Y mit Loch T

Gebiet Ω vollständig ausgefüllt mit sich periodisch wiederholender Einheitszelle YSkelettanteil $Y^* = Y \setminus T$ interner Rand $\Gamma_{int} = \cup \Gamma_T$ externer Rand $\Gamma_{ext} = \partial \Omega \setminus \Gamma_{int}$ auf $\cup Y^*$: Gleichgewicht $\sigma_{ij,j} = f_i$ Stoffgesetz $\sigma_{ij} = E_{ijkl}\epsilon_{kl}$ (linear) Kinematik $\epsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$ (linear) auf $\cup \Gamma_T$: Randbedingung $\sigma_{ij}n_j = 0$

Ziel: - Bestimmung makroskopischer Gleichungen für Stoffgesetz und Kinematik

- Ansatz: asymptotische Entwicklung $u_i(x,y) = u_i^0(x) + \epsilon u_i^1(x,y) + \mathcal{O}(\epsilon^2)$

mit $u_i^1(x,y) = h_{ikl}(y) u_{(k,l)}^0(x)$ x... Makrolevel, y... Mikrolevel Einheitslösungen

Grundlagen der Homogenisierung

Berücksichtigung der Terme bis $\mathcal{O}(\epsilon)$ liefert

- PDGL zur Bestimmung der Einheitslösungen auf Y^* : $\frac{\partial}{\partial y_j} [E_{ijkl}(y)h_{(k,y_l)mn}(y)] = -\frac{\partial}{\partial y_j} E_{ijmn}(y)$ ("Materialinhomogenitäten") auf Γ_T : $n_j E_{ijkl}(y)h_{(k,y_l)mn}(y) = -n_j E_{ijmn}(y)$ ("innere Löcher") auf Γ_Y : periodische Randbedingungen ("Nachbarzellen")
- schwache Form $\int_{Y^*} v_{(i,y_j)}(y) E_{ijkl}(y) h_{(k,y_l)mn}(y) dY^* = -\int_{Y^*} v_{(i,y_j)}(y) E_{ijmn}(y) dY^* +$ periodische Randbedingungen
- Resultate:
 - → makroskopisches Gleichgewicht $\frac{\partial}{\partial x_j} < \sigma^0_{ij}(\boldsymbol{x}) > = \frac{|Y^*|}{|Y|} < f_i(\boldsymbol{x}) >$

→ effektiver Elastizitätstensor
$$E_{ijkl}^{hom} = \frac{1}{|Y|} \int_{Y^*} E_{ijmn}(\boldsymbol{y}) [\delta_{km} \delta_{ln} + h_{(m,y_n)kl}(\boldsymbol{y})] dY^*$$

Beispiel: Block unter Gleichlast

Mikrostruktur

Matrixmaterial: $E = 2.92, \nu = 0.35$ Kernmaterial: $E = 72.3, \nu = 0.22$

Makrostruktur

Diskretisierung: → Mikroskale 9x9x9 Elemente

→ Makroskale: Variation der Größe des Problems 6x6x6, 8x8x8 und 10x10x10 Elemente

Ziel: Rechenzeitvergleich verschiedener Algorithmen

Beispiel: Block unter Gleichlast

deformiertes Netz

Betrachtung der Netzdeformation

• rotes Netz:

durchdiskretisierte Referenzlösung u^{ϵ} (quasi-exakte Lösung)

- grünes Netz (linkes Teilsystem): homogenisierte Lösung $u^0 + u^1$ mit endlicher Zellenzahl
- blaues Netz (rechtes Teilsystem):
 Lösung u^m durch Mikro-Makro-Strategie (Zweigitterverfahren mit lokaler Defektkorrektur)
 → gute Lösungsqualität

Beispiel: Block unter Gleichlast - Ergebnisqualität und Rechenzeitbedarf

 u^{ϵ} = Referenzlösung

 u^m = Lösung mittels Mikro-Makro-Strategie

angenommene Grenzschichtdicke: 2 Zellen

 $u^0 + u^1 =$ Lösung aus Homogenisierung

maximale Abweichung von	der	Referenz	ösung
-------------------------	-----	----------	-------

	$\frac{\max_{ u^{\epsilon}-u^{s}-u^{r} }}{\max_{ u^{\epsilon} }}$	$\frac{\max u^{\epsilon} - u^{m} }{\max u^{\epsilon} }$
$\epsilon = 1/6$	0.070	0.013
$\epsilon = 1/8$	0.054	0.012
$\epsilon = 1/10$ 0.043		0.011
	Homogenisierung	Zweigitterverfahren

Problem: Störungen am Rand

Rechenzeitbedarf verschiedener Lösungsalgorithmen: $\epsilon_{tol} = 10^{-4}$

- → Jacobi-Vorkonditioniertes cg-Verfahren <mark>(cgj)</mark>
- → Zweigittertechniken:
 - Gebietszerlegung (Überlappung: 1 Element)
 in Kombination mit Grobgitterkorrektur (mg)
 Glättung durch cgj-Verfahren
 - Mikro-Makro-Strategie (mm)

	Unbekannte	cgj	mg	mm
$\epsilon = 1/5$	285 660	641 [s]	288 [s]	-
$\epsilon = 1/6$	490 050	1 380 [s]	472 [s]	455 [s]
$\epsilon = 1/8$	1 151 064	-	1 031 [s]	740 [s]
$\epsilon = 1/10$	2 235 870	-	2 062 [s]	1 208 [s]

- Körper mit Mikrostruktur und Längenskalenverhältnis ϵ
- mikroskopische Verzerrungsenergiedichte $W(x/\epsilon, F)$

Grenzübergang $\epsilon \to 0$: Verzerrungsenergiedichte $W_{hom}(F)$ nur vom Gradienten F, nicht vom Ort x abhängig

Homogenisierung konvexer Integranden

 $\frac{W_{\text{hom}}(F) = \inf \frac{1}{|Y|} \int_Y W(x, F + \nabla h) \, dY \quad \text{mit} \quad h \in H^1_{\text{per}}$ auf Mikrolevel gegeben: \rightarrow Verzerrungsenergiedichte W(x, F) \rightarrow mikroskopischer 1. PK $P = \frac{\partial W}{\partial F}$ \rightarrow mikroskopische Moduli $\mathcal{L} = \frac{\partial^2 W}{\partial F \partial F}$

aber: nichtlineare Elastizitätstheorie nicht konvex,
 Betrachtung eines a priori unbekannten Zellensembles nötig

 \bullet Lokalisierung: Lösung auf einer Einheitszelle Y

- → verschiebungsgesteuerte Deformation unter periodischen Randbedingungen
- \rightarrow verformte Konfiguration x auf Mikrolevel

$$x = \underbrace{F}_{\text{makroskopischer}} \underbrace{X}_{\text{mikroskopischer}} + \underbrace{h}_{\text{Y-periodischer}}_{\text{Ortsvektor}} + \underbrace{h}_{\text{Y-periodischer}}_{\text{V-rechiebung}}$$

- Vorgehensweise:
 - \rightarrow Bestimmung des F zugeordneten Y-periodischen Verschiebungsfeldes h
 - \rightarrow dann inkrementelle mikroskopische Moduli \mathcal{L}_{ijkl} und mikroskopische Spannungen P_{ij} bekannt
 - → makroskopischer 1. Piola-Kirchhoffscher Spannungstensor

$$ar{P}_{ij}\,=\,rac{1}{|Y|}\,\,{
m s}_Y\,P_{ij}\,dY$$

→ Störung des Deformationsgradienten durch Verschiebungsgradienten mit Rang 1

→ Bestimmung der den Störungen zugeordneten *Y*-periodischen Verschiebungsfelder Δh

PDGL zur Bestimmung der effektiven Moduli auf Y : ∂/∂y_j [L_{ijkl}(y) ∂/∂y_l Δh^{mn}_k(y)] = -∂/∂y_j L_{ijmn}(y) (,,Materialinhomogenitäten") auf Γ_Y : periodische Randbedingungen (,,Nachbarzellen")
schwache Form β_Y ∂/∂y_j v_i(y) L_{ijkl}(y) ∂/∂y_l Δh^{mn}_k(y) dY = -β_Y ∂/∂y_j v_i(y) L_{ijmn}(y) dY + periodische Randbedingungen
Resultate: → makroskopisches Gleichgewicht ∂/∂x_j P̄_{ij} + f̄_i = 0 → Inkrement des 1. PK: ΔP̄_{ij} = L̄_{ijkl} ΔF_{kl}

→ effektiver Elastizitätstensor

$$\bar{\mathcal{L}}_{ijkl} = \frac{1}{|Y|} \int_{Y} \left[\delta_{im} \delta_{jn} + \frac{\partial}{\partial y_n} \Delta h_m^{ij}(\boldsymbol{y}) \right] \mathcal{L}_{mnop}(\boldsymbol{y}) \left[\delta_{ko} \delta_{lp} + \frac{\partial}{\partial y_p} \Delta h_o^{kl}(\boldsymbol{y}) \right] dY$$

 \rightarrow Information über Elliptizität des vergröberten Problems

Mathematische Definition der Elliptizität der makroskopischen Moduli

 $lacksymbol{eta}$ makroskopische Moduli $\mathcal{ ilde{L}}$ bei nicht konvexen Integranden

- \rightarrow immer elliptisch, d.h. $\mathcal{\tilde{L}}_{ijkl} a_i b_j a_k b_l \geq 0 \quad \forall a, b$
- \rightarrow nicht immer streng elliptisch, d.h. $\mathcal{\tilde{L}}_{ijkl} a_i b_j a_k b_l \stackrel{?}{>} c \cdot a_i b_j a_i b_j$ mit $c > 0; \forall a, b$
- ightarrow Verlust der strengen Elliptizität $\stackrel{_{\sim}}{=}$ Möglichkeit zur Scherbandbildung
- → Lokalisierungsbedingung:

$$\det \underbrace{(\tilde{\mathcal{L}}_{ijkl} a_j a_l)}_{\text{Akustiktensor}} \begin{cases} > 0 : \text{ stabiles GG} \\ \le 0 : \text{ Schubversagen möglich} \end{cases}$$

→ Überprüfung der Lokalisierungsbedingung in Kugelkoordinaten

$$a = \begin{pmatrix} \cos \varphi \, \cos \theta \\ \sin \varphi \, \cos \theta \\ \sin \theta \end{pmatrix}, \quad \begin{array}{c} 0 \leq \varphi \leq 2\pi \\ 0 \leq \theta \leq \pi \\ 0 \leq \theta \leq \pi \end{array}$$

Beispiel: Mikrostruktur aus Neo-Hooke-Material

• Neo-Hooke-Material
$$W(F) = \frac{\mu}{2}[I_C - 3 - 2\ln J] + \frac{\lambda}{2}(J-1)^2$$

Mikrostruktur

Matrixmaterial:
$$\mu_M = 1.0$$

 $\lambda_M = 1.0$
 $\lambda_M = 1.0$
 $\lambda_K = 2.0 \dots 128.0$
 $\lambda_K = 2.0 \dots 128.0$

Homogenisierung in Abhängigkeit der Streckungen $\lambda_{1/2/3}$ (im Bild $\mu_K, \lambda_K = 128.0$)

verschiedene Streckungen in 1-Richtung

Betrachtung der vorliegenden Elastizitätsmoduli

→ bei grossen Steifigkeitsunterschieden und anliegendem Druck effektive Schubsteifigkeit (wesentlich) geringer als die der einzelnen Phasen

Betrachtung der Akustiktensoren - bei Druck auftretende Probleme

• Minimum der Determinante des Akustiktensors $\alpha = \min_{|n=1|} \det(\tilde{\mathcal{L}}_{ijkl} n_j n_l)$

- → bei nicht positiver Determinante des Akustiktensors Scherbandbildung möglich
- → im Mehrgitterkontext Elliptizität entscheidend für Lösbarkeit

Composite Finite Elemente Strategie und Mehrgittermethoden

 klassisches Multigrid: minimale Anzahl der Finiten Elemente zur Geometriebeschreibung von der Geometrie selbst abhängig

• Ansatzraum $S^{CFE} := \{u|_{\Omega} : u \in S(\Omega)\}$

- → Restriktion aller Funktionen aus einem beliebigen Ansatzraum (der das Gebiet Ω komplett überdeckt) auf das eigentliche Definitionsgebiet
- damit Entkopplung der Diskretisierung von der Geometrie möglich
- konsistenter hierarchischer Mehrgitter-Algorithmus

Konstruktion einer Gitterhierarchie für CFE (1)

Anfangsschritte analog zu Standard FE

- Gegeben sei ein mit Hexaedern zu vernetzendes Gebiet Ω mit (inneren) Rändern
- Ausgegangen wird von einer das Gebiet Ω komplett überdeckenden Anfangstriangulierung τ_0 mit zugehöriger Netzweite $h_0 = \mathcal{O}(\operatorname{diam} \Omega)$
 - → Aus dieser wird durch reguläre Verfeinerung eine Gitterfolge $\{\tau_l\}_{0 \le l \le l_{\max}}$ mit zugehöriger Netzweite $h_0 = 2 \cdot h_1 = 4 \cdot h_2 = \ldots \ge h_{l_{\max}}$ erzeugt
 - Elemente, die während des Verfeinerungsprozesses komplett ausserhalb des Gebietes Ω landen, werden weggelassen
- Die Gitter τ_l sind logisch und physisch verbunden:
 - → Jedes Elternelement aus τ_l hat eine eindeutige Menge an Kinderelementen in τ_{l+1}
 - \rightarrow Jedes Kinderelement aus τ_l hat einen eindeutigen Elternteil in τ_{l-1}

Konstruktion einer Gitterhierarchie für CFE (2)

• Beispiel für eine Gitterfolge $\{\tau_l\}_{0 \le l \le l \max}$

- → Die so erzeugte Folge von Gittern τ_l ist i.a. keine geeignete Approximation des Gebietes Ω
- → Im nächsten Schritt wird das feinste erzeugte Gitter durch kleine Modifikationen an den Rand angepasst

Konstruktion einer Gitterhierarchie für CFE (3)

- Eine Kante XY des FE-Netzes wird als Randkante betrachtet, falls genau einer ihrer Knoten im Gebiet und einer ausserhalb liegt
- → In allen Randkanten wird der dem Rand am nächsten liegende Knoten X oder Y auf den Rand geschoben

- Dadurch ändert sich die Form aller Elemente auf allen Leveln, die den verschobenen Punkt als Knoten haben
- Die physikalische Ordnung der Gitter geht verloren,
 - die logische Ordnung der Elter/Kinder-Beziehungen bleibt bestehen
 - → zentral für Mehrgitterverfahren

21

Konstruktion einer Gitterhierarchie für CFE (4)

- Nächster konzeptioneller Schritt
 - -> Entfernen aller Elemente des feinsten Gitters, die im wesentlichen ausserhalb des Gebietes Ω liegen
 - → anschliessend werden rekursiv bis zum gröbsten Level alle Elemente entfernt, die komplett ausserhalb des Gebietes Ω liegen

- ▶ Vorteile: → wenig gestörte Elemente/Gitter
 - \rightarrow gute Konvergenz
 - \rightarrow einfache Interpolation
 - \rightarrow eindeutige Hierarchie der Netze

Konstruktion einer Gitterhierarchie für CFE (5)

- Bei Hexaedern eventuell sinnvoll:
 - → Die durch das Entfernen von Elementen entstandenen neuen Randpunkte des feinsten Gitters werden auf den Rand geschoben
 - → Kontrolle und ggf. Korrektur der Elementformen und Innenwinkel der auf dem feinsten Level veränderten Elemente
 - → Ersetzen zu stark gestörter Hexaeder durch Tetraeder

Konstruktion einer Gitterhierarchie für CFE (6)

• typische geometrische Situationen

vor Korrektur

nach Korrektur

- Elemente vom Typ K₁: Rand schneidet gegenüberliegende Kanten - sehr gutmütiger Fall, Randanpassung einfach
- \rightarrow Elemente vom Typ K_2 und K_3 : Rand schneidet benachbarte Kanten
 - Anpassung einfach, falls gemeinsamer Knoten in der Nähe des Randes
 - falls nicht, müssen zwei Knoten verschoben werden
- \rightarrow Elemente vom Typ K_4 : Rand geht durch zwei gegenüberliegende Knoten
- manchmal keine sinnvolle Alternative zur Verwendung von Dreieckselementen

Mehrgitteralgorithmus basierend auf CFE

- → Entstanden ist eine hierarchisch, aber nicht physikalisch verschachtelte Folge von Gittern $\{\tau_l\}_{0 \le l \le l \max}$
- → Konstruktion eines Mehrgitteralgorithmus zur Lösung des Variationsproblems finde $u \in H^1(\Omega)$ mit $\int_{\Omega} \langle a \nabla u, \nabla v \rangle \, dx = \int_{\Omega} (f, v) \, dx \quad \forall v \in H^1(\Omega)$
- → Die Systemmatrix $K_{l_{\max}}$ auf dem feinsten Gitter $\tau_{l_{\max}}$ kann auf Standardweise aufgestellt werden
- → Die Grobgittermatrizen der Levels l 1, ..., 0 entstehen rekursiv durch die Galerkinprodukte $K_{l-1} = (P_{l-1}^l)^T K_l P_{l-1}^l$

mit den aus den Ansatzfunktionen zu konstruierenden

Prolongationsoperatoren

 $\underbrace{(P_{l-1}^l)}_{1 \le l \le l \max}$

- → Prolongationsoperator enthält Geometrieinformation
- → zentraler Unterschied zu anderen Herangehensweisen

Konstruktion der Prolongationsoperatoren

- → Sei $(S_l)_{l=0}^{l_{max}}$ eine Familie von Ansatzräumen der Dimension n_l
- → Aus den zugehörigen Ansatzfunktionen $(N_{l,i})_{1 \le i \le n_l, 0 \le l \le l_{\max}}$ wird durch

$$\sum_{i=1}^{n_l} w_i N_{l,i} = \sum_{i=1}^{n_{l-1}} v_i N_{l-1,i}$$

die Interpolation

 $w = P_{l-1}^{l} v \quad \text{mit} \quad (P_{l-1})_{i,j} = N_{l-1,j}(x_{l,i}) \quad \forall \ 1 \le i \le n_l, \ 1 \le j \le n_{l-1}$

von Feingitterfunktionen w aus Grobgitterfunktionen v bestimmt

→ wichtig: Ausnutzen der hierarchischen Struktur der Netze

Institut für Mechanik

Standardalgorithmus: Newton-Multigrid für nichtlineare Probleme

- (1) Bestimme Startlösung $v_{l_{\max}}^0$ auf dem feinsten Gitter $\tau_{l_{\max}}$
- (2) Bestimme nichtlineares Residuum $r_{l_{\max}}^i$ und Tangente $K^T(v_{l_{\max}}^i)$
- (3) Führe einen linearen Mehrgitterzyklus zur Lösung der Tangentengleichung $K^T(v_{l_{\max}}^i) \Delta v = r_{l_{\max}}^i$ durch
- (4) Abbruchkriterium erfüllt? Falls nein, weiter bei (2)

Erstes Beispiel

- → Struktur mit vier Löchern, St.-Venant-Kirchhoff-Material mit $\lambda, \mu=1$
- → Diskretisierung auf verschiedenen Verfeinerungslevels:
 - 7 Levels \leftrightarrow 5016 Unbekannte
 - 8 Levels \leftrightarrow 18136 Unbekannte
 - 9 Levels \leftrightarrow 68888 Unbekannte (siehe Abbildung)

Ausschnitt aus der Diskretisierung auf dem 9. Level

Erstes Beispiel

- → Mehrgitter V-Zyklus, je 1 Zyklus Gauss-Seidel-Verfahren als Vor- und Nachglättung
- → Abbruchkriterium $\epsilon^{tol} \le 10^{-8}$
- → 5 Lastschritte bis zur deformierten Konfiguration mit 5 Prozent Stauchung

deformierte Kon	figuration
-----------------	------------

Level	Unbekannte	Rechenzeit	Rechenzeit
		cgj-Verfahren	Mehrgitter
7	5016	27 sec	45 sec
8	18136	201 sec	169 sec
9	68888	1621 sec	734 sec

Zweites Beispiel

- -> Struktur mit 25 willkürlich verteilten Löchern, Neo-Hooke-Material mit $\lambda, \mu=1$
- → Mehrgitter V-Zyklus, je 1 Zyklus Gauss-Seidel-Verfahren als Vor- und Nachglättung
- → Abbruchkriterium $\epsilon^{tol} \le 10^{-8}$
- → 4 Lastschritte bis zur deformierten Konfiguration mit 20 Prozent Dehnung
- → Rechenzeitvergleich der Diskretisierungen auf den verschiedenen Verfeinerungslevels:

Level	Unbekannte	Rechenzeit	Rechenzeit
		cgj-Verfahren	Mehrgitter
7	7760	42 sec	71 sec
8	28950	417 sec	314 sec
9	110728	7574 sec	1467 sec

Zweites Beispiel

→ Undeformiertes und deformiertes Netz der Diskretisierung auf Level 7

undeformierte Konfiguration

deformierte Konfiguration

Drittes Beispiel: 3D-Struktur unter Zug

- → Material: Neo-Hooke $\Psi(I_C, J) = \frac{1}{2}\mu(I_C 3) \mu \ln J + \frac{1}{2}\lambda(J 1)^2, \quad \lambda, \mu = 1$
- → 11067 Unbekannte
- → Abbruchkriterium: $||\Delta v||_{\infty} \le 10^{-4}$
- → Mehrgitter V-Zyklus, je 1 Zyklus Gauss-Seidel-Verfahren als Vor- und Nachglättung
- → Rechenzeit 1. Lastschritt (4 Newton-Iter.): 160 sec (Vgl.: cgj-Verfahren 152 sec)

undeformierte Konfiguration

deformierte Konfiguration

Viertes Beispiel: 3D-Struktur unter Biegung

- → Material: Neo-Hooke $\Psi(I_C, J) = \frac{1}{2}\mu(I_C 3) \mu \ln J + \frac{1}{2}\lambda(J 1)^2, \quad \lambda, \mu = 1$
- → 24939 Unbekannte
- → Abbruchkriterium: $||\Delta v||_{\infty} \le 10^{-4}$
- → Mehrgitter V-Zyklus, je 1 Zyklus Gauss-Seidel-Verfahren als Vor- und Nachglättung
- → Rechenzeit 1. Lastschritt (4 Newton-Iter.): 379 sec (VgI.: cgj-Verfahren 454 sec)

undeformierte Konfiguration

Zusammenfassung

Composite-Finite-Element Multigrid

- → Verallgemeinerung des geometrischen Multigrid
- → Manipulation der Grobgitterbasis
- → Berücksichtigung der Neumann-Randbedingungen auch auf den gröberen Levels
- → Homogenisierung des E-Tensors nicht notwendig
- → Effizienter Löser für Probleme mit vielen Unbekannten und komplizierten Rändern
- → auch für komplett aperiodische Zellstrukturen einsetzbar

