Constitutive Models for Foams in Crashworthiness Analysis - a State-of-the-Art Review

Stefan Kolling & Markus Feucht
MTC Sindelfingen

Workshop Simulation von Schaumstoffen mit stark nichtlinearem Verhalten, Hohenwart 15.-16.9.2005
Introduction

- What are foams?
 - Material scientist: any material manufactured by some expansion process
 - (Crash-) Numericist: a material with a Poisson coefficient close to zero

Both definitions coincide only for low density foams, roughly below 200g/l

- High density (>200g/l) structural foams are not foams in the numerical sense since they exhibit a non-negligible Poisson effect

- In what follows: polymeric foams are considered only
Constraints in crashworthiness analysis

- Used: explicit finite element method (LS-DYNA)
- Time step determined by element size and material tangent
- Material model determines computation time!
- Results have to be generated very fast due to development process
- Time-consuming parameter identification not acceptable
Further limitations

- **Accuracy**
 - Global density variations
 - Local density variations (gradients in the part)
 - Skin formation in cold formed parts (not in cut parts)
 - Influence of the microstructure, mainly in parts with small dimensions

- **Simulation problems**
 - Dynamic test results on soft polyurethanes (seatfoams) are dependent on size and shape of the sample, due to the open cell structure and air outflow
 - Theory of porous media needed
 - Or tests on samples that are roughly the size of the part of interest
Foams in crash simulation

Subdivision according to their mechanical behaviour

- Elastic foams
 - Hyperelastic-viscous behaviour (MAT_57/73/83...)
 \[\sigma_i = \frac{1}{\lambda_j \lambda_k} \frac{\partial W}{\partial \lambda_i} = \frac{1}{\lambda_j \lambda_k} \tau_i(\lambda_i) \quad W = \int \tau d\lambda \begin{array}{c} + \end{array} \]

- Crushable foams
 - Visco-elastic-visco-plastic behaviour (not available yet)
 - Strain rate independent plasticity \(f(\sigma_{ij}) \leq 0 \) anisotropic (MAT_142)
 - Strain rate dependent plasticity \(f(\sigma_{vm}, p) \leq 0 \) isotropic (MAT_075)
 - Elasto-visco-plasticity \(f(\sigma_{vm}, p, \dot{\varepsilon}^p) \leq 0 \) isotropic (SAMP)
Elastic foams

- Hyperelastic viscous material behaviour
 - Poisson‘s ratio = 0 (=> principle stresses uncoupled)
 - Hill-functional + viscous terms formulated in principal stress space

\[
\sigma_i = \frac{1}{\lambda_j \lambda_k} \frac{\partial W}{\partial \lambda_i} = \frac{1}{\lambda_j \lambda_k} \tau_i(\lambda_i) \quad W = \int \tau d\lambda
\]

- Input of stress-strain curves at different strain-rates desirable

- Important applications:
 - bumper foam
 - seat and padding
 - pedestrian protection: leg impactor (Conforfoam)
Material laws for elastic foams (no Poisson effect)

- Strainrate dependent hyperelastic
- Hyperelastic-visco-elastic

Example Equations:*
- $\sigma \propto \varepsilon$ for MAT_57, MAT_LOW_DENSITY_FOAM
- $\sigma \propto \varepsilon^2$ for MAT_83, MAT FU-CHANG_FOAM
- $\sigma \propto \varepsilon^{1.5}$ for MAT_62, MAT_LOW_DENSITY_FOAM
Material law for elastic foams (with Poisson effect)

- Implemented as MAT_SIMPLIFIED_RUBBER/FOAM in 2004 (Kolling/DuBois/Feng)
- Uses Hill instead of Ogden functional (incompressible case):

\[W = \sum_{j=1}^{m} C_j \left[\lambda_1^{b_j} + \lambda_2^{b_j} + \lambda_3^{b_j} - 3 + \frac{1}{n} (J^{-n b_j} - 1) \right] \]

where \(C_j \), \(b_j \) and \(n \) are material constants and \(J = \lambda_1 \lambda_2 \lambda_3 \)

The nominal stresses (force per unit undeformed area) are \(i = 1, 2, 3 \)

\[S_i = \frac{1}{\lambda_i} \sum_{j=1}^{m} C_j \left[\lambda_1^{b_j} - J^{-n b_j} \right] \]

for uniaxial tension:

\[n = \frac{- \log \lambda_3}{2 \log \lambda_3 + \log \lambda_1} \quad \rightarrow \quad S_1(\lambda_1) = \frac{1}{\lambda_1} \sum_{j=1}^{m} C_j \left[\lambda_1^{b_j} - \lambda_1^{-n b_j} \right]^{2 n + 1} \]
Material law for elastic foams (with Poisson effect)

Foams in crash simulation

let \[f(\lambda) = \sum_{j=1}^{m} C_j \lambda^{b_j} \]

\[\lambda_k S_1(\lambda_k) = f\left(\lambda_1\left(\frac{-n}{2n+1}\right)^k\right) - f\left(\lambda_1\left(\frac{-n}{2n+1}\right)^{2k}\right), \quad k = 1, 2, 3, \ldots \]

\[f(\lambda_1) = \lambda_1 S_1(\lambda_1) + \lambda_1 \left(\frac{-n}{2n+1}\right) S_1(\lambda_1) + \lambda_1 \left(\frac{-n}{2n+1}\right)^2 S_1(\lambda_1) + \ldots \]

The function \(f(\lambda) \) is determined and

\[S_i = \frac{1}{\lambda_i} \left[f(\lambda_i) - f(J^{-n}) \right], \quad i = 1, 2, 3 \]

- Load curves directly inputted in material card
- Extension due to elastic damage is realized in Mat183 (for rubber first) (Kolling/Du Bois/Benson) => simulation of hysteresis by dissipation
Material laws for elastic foams in LS-DYNA

<table>
<thead>
<tr>
<th>No.</th>
<th>keyword</th>
<th>formulation</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>MAT_BLATZ_KO_FOAM</td>
<td>hyperel., $\nu = 0.25$</td>
<td>1 parameter</td>
</tr>
<tr>
<td>57</td>
<td>MAT_LOW_DENSITY_FOAM</td>
<td>hyperel. + viscoel.</td>
<td>LC+parameter</td>
</tr>
<tr>
<td>62</td>
<td>MAT_VISCOSOUS_FOAM</td>
<td>hyperel. + viscoel. ν variable</td>
<td>parameter</td>
</tr>
<tr>
<td>73</td>
<td>MAT_LOW_DENSITY_VISCOSOUS_FOAM</td>
<td>hyperel. + 6 viscoel. dampers</td>
<td>LC parameter</td>
</tr>
<tr>
<td>83</td>
<td>MAT_FU_CHAN_FOAM</td>
<td>hyperel.+strain-rate</td>
<td>LC/ table</td>
</tr>
<tr>
<td>177</td>
<td>MAT_HILL_FOAM</td>
<td>hyperel., ν variable</td>
<td>LC</td>
</tr>
<tr>
<td>178</td>
<td>MAT_VISCOELASTIC_HILL_FOAM</td>
<td>$= 177 +$ viscoel</td>
<td>LC + parameter</td>
</tr>
<tr>
<td>179</td>
<td>MAT_LOW_DENSITY_SYNTETIC_FOAM</td>
<td>hyperel. pseudo-damage</td>
<td>LC</td>
</tr>
<tr>
<td>180</td>
<td>MAT_LOW_DENSITY_SYNTETIC_FOAM ORTHO</td>
<td>no damage orthogonal load direction</td>
<td>LC</td>
</tr>
<tr>
<td>181</td>
<td>MAT_SIMPLIFIED_RUBBER/FOAM_(WITH_FAILURE)</td>
<td>hyperel.+strain-rate ν variable</td>
<td>LC/ table</td>
</tr>
</tbody>
</table>
Material laws for elastic foams

- Material 83 is the most frequently used industrial solution for the simulation of elastic foams: bumperfoam and seatfoam
- main reason is user-friendliness: no parameters need to be fitted, test curves are (almost) directly inputted
Material laws for elastic foams

- If extrapolation of test curves is necessary:
 - We use a hyperbolic function of order n
 - Extrapolation exponent n is fitted to have a continuous transition

\[
\sigma_{n+1} = \sigma_n + \frac{\partial \sigma}{\partial \varepsilon} \left|_{\varepsilon_1} \right. \left(\frac{1-\varepsilon_1}{1-\varepsilon_n} \right)^n \Delta \varepsilon
\]

\[
\varepsilon_n > \varepsilon_1
\]

\[
n = \frac{\ln \left(\frac{\sigma_2 - \sigma_1}{\frac{\partial \sigma}{\partial \varepsilon} \left|_{\varepsilon_1} \right. \Delta \varepsilon} \right)}{\ln \left(\frac{1-\varepsilon_1}{1-\varepsilon_2} \right)}, \quad \varepsilon_2 > \varepsilon_1
\]
Example: PU-Foam

- Extremely high compression up to 98%
- Stability problems
- Time step size!
- Contact problems
- Sharp impactors cause deformation gradients in foam parts
- Lagrangean finite elements cannot follow the corresponding deformed shapes unlimitedly
- EFG methods (v970) may present an alternative
Example: Conforfoam, leg-impact

Validation test

Impact velocity 35/40 km/h

Variation in vertical positions

Tibia Acceleration

Bending Angle

Shear Displacement
Leg-impact: test configuration for validation
Foams in crash simulation

Example: Adhesive EFBond (rubber foam)

- Load cell
- Pressure plate
- Specimen
- Load direction
- Test specimen

Microstructure, 1.7x22.5mm
Foams in crash simulation

Adhesive EFBond

- $l=100\text{mm}$, $b=15\text{mm}$ and $t=2/3/4\text{mm}$
- volume elements: $\min l = 0.67\text{mm}$
- timestep $= 6.8 \times 10^{-6}\text{ s}$

Quasi static loading

Dynamic loading: $800/\text{s}$
Plastic foams

- Structural and crushable foams
- Material model: SAMP
 - not only valid for thermoplastics
 - It covers metals as well
 - Also suitable for
 - Adhesives (if you have a glue how to model)
 - Structural foams
 - Crushable foams
- Example: validation of a high-strength, low-density, expandable epoxy polymer (TeroCore by CORE Products) using a single material input card of SAMP
Material laws for crushable foams in LS-DYNA

<table>
<thead>
<tr>
<th>No.</th>
<th>keyword</th>
<th>formulation</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,14</td>
<td>MAT_SOIL_AND_FOAM</td>
<td>isotropic, el-pl</td>
<td>parameter</td>
</tr>
<tr>
<td>26,126</td>
<td>MAT_HONEYCOMB</td>
<td>anisotropic, el-pl</td>
<td>LC</td>
</tr>
<tr>
<td>53</td>
<td>MAT_CLOSED_CELL_FOAM</td>
<td>isotropic, el-pl</td>
<td>LC</td>
</tr>
<tr>
<td>63,163</td>
<td>MAT_CRUSHABLE_FOAM</td>
<td>isotropic, el-pl ν variable</td>
<td>LC / table</td>
</tr>
<tr>
<td>75</td>
<td>MAT_BILKHU/DUBOIS_FOAM</td>
<td>isotropic, el-pl strain-rate</td>
<td>LC parameter</td>
</tr>
<tr>
<td>142</td>
<td>MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM</td>
<td>anisotropic el-pl</td>
<td>LC</td>
</tr>
<tr>
<td>144</td>
<td>MAT_PITZER_CRUSHABLE_FOAM</td>
<td>isotropic, el-pl ν variable</td>
<td>LC + strain-rate parameter</td>
</tr>
<tr>
<td>user</td>
<td>MAT_SAMP</td>
<td>isotropic, el-pl ν variable</td>
<td>LC / table</td>
</tr>
</tbody>
</table>
Foams in crash simulation

SAMP: A Semi-Analytical Model for Polymers

In co-operation with André Haufe (Dynamore) & Paul Du Bois (Consultant)

\[
f = q^2 - A_0 - A_1 p - A_2 p^2
\]

\[
A_0 = 3\sigma_s^2, \quad A_1 = 9(\sigma_s^2 \frac{\sigma_c - \sigma_t}{\sigma_c \sigma_t})
\]

\[
A_2 = 9(\frac{\sigma_t \sigma_c - 3\sigma_s^2}{\sigma_t \sigma_c})
\]

plastic potential:

\[
g = \begin{cases}
q^2 - A_0 - A_1 p - A_2 p^2 & \text{associated} \\
\sqrt{q^2 + \alpha p^2} & \text{non-associated}
\end{cases}
\]

flow parameter correlates to plastic Poisson’s ratio: \(\alpha \propto \nu_p = \frac{9 - 2\alpha}{18 + 2\alpha} \leq 0.5\)
SAMP – A Semi-Analytical Model for Polymers

- Hardening curves: tabulated data

- Tensile hardening curve from tensile test at different strain rates
 \[\varepsilon_{pt} = \varepsilon_t - \frac{\sigma_t}{E}, \quad \varepsilon_t = \ln \frac{l}{l_0} \]

- Compressive hardening curve from compression test
 \[\varepsilon_{pc} = \varepsilon_c \frac{\sigma_c}{E}, \quad \varepsilon_c = -\ln \frac{l}{l_0} \]

- Shear hardening curve from shear test
 \[\varepsilon_{ps} = \varepsilon_s \frac{\sigma_s}{2G}, \quad \varepsilon_s = \frac{1}{2} \int \frac{\partial \dot{x}}{\partial y} dt = \frac{1}{2} \frac{d}{h_0} \]

Workshop Simulation von Schaumstoffen mit stark nichtlinearem Verhalten, Hohenwart 15.-16.9.2005
Foams in crashsimulation

SAMP: Ductile damage and failure

Damage for elastic unloading is defined by a load curve $\chi(\varepsilon^{pl}) = [0,1]$

$$\sigma_{eff} = \sigma_{pl} \cdot \left(1 - \chi(\varepsilon^{pl})\right)$$

Failure onset defined by the parameter d_c, further fading of the element defined by $\Delta \varepsilon_{rupt}^p$
Foams in crash simulation

Stress update algorithms: NEWTON-iteration

Backward Euler return mapping or general closest-point-projection or radial return

- fully implicit algorithm
- explicit algorithm

Linearization around the elastic trial state:

\[
f_{n+1}^{k-1}(\sigma_{n+1}^{trial}) = \frac{\partial f}{\partial \Delta \lambda} d (\Delta \lambda)^{k-1} = 0
\]

\[
\Delta \lambda^k = \Delta \lambda^{k-1} + d (\Delta \lambda)^{k-1} = \Delta \lambda^{k-1} - \frac{f_{n+1}^{k-1}}{\frac{\partial f}{\partial \Delta \lambda}}
\]
Materialvalidierung mit SAMP

Foams in crashsimulation

- **FOAM compression**
 - Experiment
 - Simulation

- **FOAM tension**
 - Fading out via damage formulation

- **FOAM shear**
 - Experiment
 - Simulation

Workshop Simulation von Schaumstoffen mit stark nichtlinearem Verhalten, Hohenwart 15.-16.9.2005
Conclusions and outlook

- Elastic foams
 - Popular material law based on strain rate dependent hyperelasticity (kind of pseudo viscosity): FU_CHANG_FOAM
 - Stress-strain curves as input directly from test data
 - Real viscosity and elastic rebound are the biggest stumbling blocks in that kind of formulation

- Crushable foams
 - Material laws for crushable foams available (even anisotropic)
 - SAMP as an alternative considering different behaviour under tension, compression, shear and biaxial loading
 - Anisotropic extension for SAMP desirable
Acknowledgement:
The experimental testing of EPP has been performed by T. Gerster, EMI
The experimental testing of EFBOND has been performed by H. Nahme, EMI
Experimental testing of Teroacore by G. Schmich, CORE Products
The presentation was highly supported by A. Haufe (Dynamore) & Paul Du Bois