

Mikro- und makroskopisches Verformungsverhalten offenporiger Metallschwämme

S. Demiray, W. Becker, J. Hohe

becker@mechanik.tu-darmstadt.de.

Institut für Mechanik

TECHNISCHE UNIVERSITÄT DARMSTADT

Inhalt

- Einführung
- Mikromechanische Modellierung
 - Numerische Homogenisierung
 - 3-D Modellschaum
- Vergleich von Simulation mit experimentellen Daten
 - Materialien
 - Einsinnige Belastungsversuche
 - Isotherme Ermüdungsversuche
- Effektive Fließflächen
 - Anfangsfließfläche
 - Evolution der Fließfläche
- Zusammenfassung

P

Energetische Homogenisierung

- Äquivalenzbedingungen
 - Makroskopisch äquivalente Deformationszustände

$$\bar{\varepsilon}_{ij} = \frac{1}{V^{\mathsf{RVE}}} \int\limits_{V^{\mathsf{RVE}}} \varepsilon_{ij} \, dV \stackrel{!}{=} \frac{1}{V^{\mathsf{RVE}}} \int\limits_{V^{\mathsf{RVE}}} \varepsilon_{ij}^* \, dV = \bar{\varepsilon}_{ij}^*$$

 Gleicher Betrag an gespeicherter Verzerrungsenergie in beiden RVEs

$$\bar{w} = \frac{1}{V^{\mathsf{RVE}}} \int\limits_{V^{\mathsf{RVE}}} w \, dV \stackrel{!}{=} \frac{1}{V^{\mathsf{RVE}^*}} \int\limits_{V^{\mathsf{RVE}^*}} w^* \, dV = \bar{w}^*$$

Ablauf der Homogenisierungsrechnung

- Elastisch-plastisches Materialmodell auf der Mesoskala
- Numerische Berechnung der effektiven
 Spannungen $\bar{\tau}_{ij}$
- Plastische Verzerrungen werden "eingefroren" bei der Variation der Effektivdehnungen $\bar{\varepsilon}_{ij}$

3-D Modellschwamm

- Kubisch-raumzentrierte (krz)
 Anordnung von Oktaederstümpfen
- Volumen des Oktaederstumpfs

$$V_{\rm Tetrakaidekaeder} = 8\sqrt{2}e^3$$

Volumen des primitiven RVEs

$$V_{\rm RVE} = (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = \frac{1}{2}a^3 = 8\sqrt{2}e^3$$

Kubische Symmetrie:

$$\begin{bmatrix} C_{11} & C_{12} & C_{12} \\ C_{12} & C_{11} & C_{12} & \mathbf{0} \\ C_{12} & C_{12} & C_{11} \\ & & C_{66} \\ \mathbf{0} & & C_{66} \\ & & & C_{66} \end{bmatrix}$$

Modellierung von offenporigen Metallschwämmen

2-D Modellschaum

- Hexagonale Mikrostruktur
- Sechs Symmetrieebenen
 ⇒ Isotropes Verhalten f
 ür kleine
 Deformationen
- Raumfüllendes Polygon

3-D Modellschaum

- krz-Gitter bestehend aus
 Tetrakaidekaeder-Zellen
- Kubische Symmetrie; sehr geringe Anisotropie
- Raumfüllender Polyeder

Einfluß der Modelldimension

Einachsige Druckdeformation

- niedrigste Beuleigenform als
 Anfangsimperfektion
- qualitativ ähnliches Materialverhalten
- quantitative Unterschiede in den Spannungsgrößen

Biaxiale Druckdeformation

kein ausgeprägtes Spannungs-Plateau
 im Vergleich zu experimentellen Ergeb inissen

Materialien

- PORMET-Schaum:
 - AlSi9Cu3, $\varrho=0.15 \frac{\text{g}}{\text{cm}^3}$
 - Sprödes Verhalten
 - Korndurchmesser pprox Zellstegdicke
 - Silizium–Ausscheidungen an den Korngrenzen

Messingschwamm:

– α -Messing (11% Zn; 3,5%Si),

 $\varrho=0.4 \tfrac{\mathrm{g}}{\mathrm{cm}^3}$

- Duktiles Deformationsverhalten
- feinkörnige Mikrostruktur der Zellstege
- Hersteller: Gießerei-Institut, RWTH
 Aachen

Experimenteller Versuchsaufbau

- Isotherme und thermomechanische
 Prozeßführung möglich
- Versuchsdurchführung durch
 Projektpartner an der Universität
 Siegen (Prof. Christ)
- Proben:
 - Abmessungen:
 - $32 \mathrm{mm} \times 50 \mathrm{mm} \times 118 \mathrm{mm}$
 - Relative Dichte: $\bar{\varrho} = 0.0848$
- Speziell-konstruierte Probenaufnahmen

Einfluß der Randbedingungen

Regulärer Modellschaum

Irroguläror

Irregulärer Modellschaum

- Versuch: Festeingespannte Probenenden
- Simulation: Homogene einachsige Dehnungen und Spannungen
- Experimentelle Spannungs-Dehnungskurve liegt zwischen den beiden theoretischen Grenzfällen
- Ausrichten von Zellstegen in die Belastungsrichtung

Einfluß der lokalen Schaumdichte

- Experiment: Inhomogenität der Probe auf der Makroebene
- \blacksquare Simulation: Variation der relativen Dichte um $\pm 20\%$
- Unterschiedliche Spannungs-Dehnungskurven resultieren aus Schwankungen der relativen Dichte

Einfluß der Materialverteilung

- Lichtmikroskopie: Ungleichmäßige Materialverteilung infolge des Fertigungsprozesses
- Effektive Poissonzahl $\bar{\nu} \approx 0.5$; fast unabhängig von der Materialverteilung t_m/t_e .
- geringe Abhängigkeit des effektiven E-Moduls im Bereich $0.4 \leq \frac{t_m}{t_e} \leq 0.6$.

Homogenisierungskonzept zur Ermittlung von Fließflächen

Lastpfade im Dehnungsraum

$$\bar{\varepsilon}_{ij} = \lambda \bar{\varepsilon}_{ij}^0$$

Kriterium für makroskopisches Fließen:

$$\exists \boldsymbol{x} \in V : \quad F(\sigma_{ij}) := \sqrt{\frac{3}{2}} s_{ij} s_{ij} - \sigma_y = 0$$

Definition effektiven Größen:

$$ar{oldsymbol{\sigma}} = \langle oldsymbol{\sigma}
angle = rac{1}{V_{ ext{RVE}}} \int\limits_V oldsymbol{\sigma}(oldsymbol{x}) \, dV$$

 $ar{oldsymbol{F}} = \langle oldsymbol{F}
angle = rac{1}{V_{ ext{RVE}}} \int\limits_V oldsymbol{F}(oldsymbol{x}) \, dV$

Numerische Homogenisierung:

$$\bar{\boldsymbol{\sigma}} = \frac{1}{V_{\mathsf{RVE}}} \int\limits_{\partial V} \boldsymbol{t} \otimes \boldsymbol{x} \, dV$$

Einfluß von Imperfektionen

– p.14/20

Gestalt der Makro-Fließflächen

3-D Modellschaum: Einachsige Zugdeformation

Evolution der Makro-Fließfläche

E

3-D Modellschaum: Schubdeformation

a) Dehnungsraum

b) Lastpfad im Spannungsraum

3-D Modellschaum: Biaxiale Stauchung

Zusammenfassung

- Berechnung der effektiven, mechanischen Eigenschaften mittels verzerrungsenergiebasierter Homogenisierung
- FE-Modelle auf der Basis von idealiserten, periodischen Mikrostrukturen
- Simulationsergebnisse zeigen in Verbindung mit experimentellen Versuchen:
 - quantitativ unterschiedliches Verhalten von 2-D und 3-D Modellschäumen f
 ür äquivalente Lastfälle
 - Ausbildung von deformationsinduzierten Anisotropien
 - signifikanter Einfluß der Randbedingungen/ Probeneinspannung
 - Inhomogenität der Proben ist verantwortlich f
 ür Streuung der effektiven Spannungs-Dehnungskurven
- Numerische Experimente zur Ermittlung der Makro-Fließflächen
 - effektive Makro-Fließflächen zeigen interessante Effekte in ihrem Evolutionsverhalten

5