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Mortar methods for large deformation contact problems
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1 Constrained semi-discrete elastic bodies

We focus on specific boundary conditions which restrict the motion of the semi-discrete elastic body. These restrictions can
be characterized by geometric constraints acting on the boundary nodes of the discrete system at hand. In particular, we
distinguish between Dirichlet-type boundary conditions and constraints due to contact. It suffices to consider the planar two-
body contact problem (Fig. 1).
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Fig. 1: The planar two-body contact problem Fig. 2: Snapshots of the motion

Assume that nnode denotes the total number of nodes due to the space discretization of the two elastic bodies, so that η =
{1, . . . , nnode} is the set of node numbers associated with the discrete two-body system. Further let η ⊂ η be the set of node
numbers lying on the boundaries of the two-body system. The relevant boundary conditions can be characterized by algebraic
constraints of the form Φ(q) = 0. If the two bodies are in contact and provided that ‘active’ nodes A ∈ ηc ⊂ η − ηϕ lying
on the contact surface have been detected, additional constraints arise. Due to the presence of the constraints, the equations of
motion can now be written in the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
− DΦ(q)T λ, 0 = Φ(q) (1)

where Φ(q) ∈ R
m are the relevant constraint functions, DΦ(q) is the corresponding constraint Jacobian and λ ∈ R

m are
Lagrange multipliers which determine the size of the constraint forces in (1)2. The set of differential-algebraic equations
(DAEs) in (1) can be rewritten in compact form by introducing the augmented Hamiltonian

Hλ(z) =
1
2
p · M−1p + Vλ(q) where Vλ(q) = V int(q) + V ext(q) + λ · Φ(q) (2)

is an augmented potential function. Now the differential part of the DAEs can be written as ż = �∇Hλ(z) which, of course,
has to be supplemented with the algebraic constraints (1)3.

2 Energy-momentum scheme

We next outline the design of a time-stepping scheme which is able to reproduce for any step-size the crucial conservation
properties summarized above. Concerning the time discretization of the DAEs (1), we apply the Galerkin-based approach
developed by Betsch & Steinmann [1]. To this end, we consider a characteristic time-step ∆t = tn+1 − tn and restrict our
attention to linear approximations (the so-called mG(1) method in [1]) of the form

zh(α) = (1 − α)zn + αzn+1 for α ∈ [0, 1] (3)

In this connection all quantities at tn, such as zn, can be regarded as being given. Note that (3) leads to a globally continuous
approximation of the phase space coordinates. In contrast to that, the Lagrange multipliers are assumed to be piecewise
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constant in each time-step, i.e. λh = λn+1. The mG(1) method yields

zn+1 − zn = ∆t�

∫ 1

0

∇Hλh(zh) dα (4)

It is shown in [1] that the application of a specific quadrature formula for the evaluation of the time integral in (4) has a strong
impact on the conservation properties of the resulting time-stepping scheme. In the present work we choose∫ 1

0

∇Hλh(zh) dα ≈ ∇̄Hλn+1(zn, zn+1) (5)

where ∇̄Hλ(zn, zn+1) is a discrete gradient (or derivative) in the sense of Gonzalez [2]. It is shown in [2] that the discrete
gradient can be designed such that the desired conservation properties are satisfied and specific consistency and accuracy
requirements are met. To achieve this goal we aim at a reparametrization of the augmented Hamiltonian which incorporates
the invariance properties in a natural way. For example, assume that the rotational invariance property holds and that the
augmented Hamiltonian depends only on S(z), where

S(z) = S(z1, . . . , zN ) = {yA · yB , 1 ≤ A ≤ B ≤ nnode , yA ∈ {qA, pA}} (6)

is the set of (quadratic) invariants of z ∈ R
2ndof . It is worth mentioning that this approach is in accordance with Cauchy’s

Representation Theorem (see, for example, Truesdell & Noll [5, Sect. 11.]). Accordingly, the augmented Hamiltonian can
now be written in the form Hλ(z) = H̃λ (π(z)). For further details on the application of this proposal to the mortar method,
please refer to Hesch & Betsch [3].

3 Numerical example

The present numerical example deals with the impact of two elastic rings. Similar examples have been previously considered
by Wriggers et al. [6] and Laursen & Love [4]. This example is especially well-suited to check the algorithmic conservation
properties.

64 isoparametric displacement-based bi-linear finite elements have been used to discretize each initially circular ring. The
material behavior of both rings is assumed to be governed by the St. Venant-Kirchhoff material model with Young’s modulus
E = 100 and Poisson’s ratio ν = 0.1. The mass density of both rings is �R = 0.001. The two rings move towards each
other with an initial velocity of v0 = 10. In the simulations documented below a time-step of ∆t = 0.01 has been used. To
illustrate the simulated motion snapshots of the two rings at successive points in time are depicted in Fig. (2). After the initial
free-flight phase contact takes place within the time interval of approximately [6, 16].
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Fig. 3: Energy versus time
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Fig. 4: Total angular momentum versus time

Since no external forces/torques act on the present two-body system the total linear momentum as well as the total angular mo-
mentum are conserved quantities. These momenta are indeed conserved by the proposed algorithm, see Fig. (4). Furthermore,
algorithmic conservation of the total energy follows from Fig. (3).
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