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Кинематический подход, основанный на рассмотрении условий контакта с 

точки зрения дифференциальной геометрии поверхностей контакта, использован 
для построения вариационных уравнений, а также для их линеаризации. 
Ковариантные дифференциальные операции, необходимые для этого, определены в 
специально определенной системе координат, связанной с поверхностью контакта. 
Это позволяет получить контактную касательную матрицу жесткости в удобной 
геометрической форме, содержащей «главную», «поворотную» матрицы и матрицу 
«кривизны контактной поверхности». Примеры контакта изгиба пластин при 
больших перемещениях около поверхностей второго порядка демонстрируют 
эффективность подхода, а также влияние различных частей контактной матрицы на 
сходимость. 

A kinematical approach, based on the consideration of contact from the surface 
geometry point of view, is used for a consistent formulation of contact conditions and for 
the derivation of the corresponding tangent matrix. Within this approach differential 
operations are treated as covariant derivatives in the local surface coordinate system. The 
main advantage is a more algorithmic and geometrical structure of the tangent matrix, 
which consists of a “main”, a “rotational” and a pure “curvature” term. Representative 
examples with contact and bending of shells modeled with linear and quadratic elements 
over some classical second order geometrical figures serve to show situations where 
keeping all parts of the tangent matrix is not necessary. 

1. Introduction. From the variety of methods, which are mainly used for the solution of 
contact problems, the “master-slave” concept is one of the most robust methods. This concept 
is based on the determination of the penetration of the “slave” surface, represented by “slave” 
nodes into a “master” surface. The penetration can be used for regularization methods like the 
penalty method and the Augmented Lagrange multiplier method. The penalty method, see e.g. 
Wriggers and Simo [1], Laursen and Simo [2], leads to the exact solution in the limit when the 
penalty approaches infinity. In nonlinear contact problems the penetration is a function of the 
current geometry and it is used for the “constitutive” model of the contact forces. For the 
solution of nonlinear equilibrium equations by a Newton method the corresponding equations 
have to be linearized. The main idea of the proposed kinematical approach is to consider the 
global linearization separately from the local “slave” node searching procedure and derive 
linearized equations from kinematic equations in the local surface coordinate system. It leads 
to a very simple structure of the tangent matrix for the contact element, which is naturally 
divided into a “main”, a “rotational” and a “pure curvature” parts. For extensive tests of the 
proposed technique numerical examples with curved surfaces are performed. These tests serve 
to check the influence of different parts of the contact matrix on convergence within a 
nonlinear solution process.  



2. Contravariant formulation of contact conditions. We introduce two coordinate 
systems: a reference global coordinate system for the finite element discretization only and a 
spatial local surface coordinate system in the contact consideration. All geometric properties 
of the element as well as the differential operations will be described in the local coordinate 
system of the “master” surface. A surface of this element is parameterized by local 
coordinates 21,ξξ  from the finite element discretization. We introduce surface coordinate 
vectors in the usual fashion: 
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As a necessary procedure to define the value of penetration, see in Wriggers [3] and Laursen 
[4], the projection procedure of the contact node vector onto the master surface has to be 
provided. Let sr  be a position vector of a “slave” vector and r  its projection onto the 
“master” surface. Then the standard closest point procedure to define the value of the 
penetration is written as the following extremal problem:  

 ( ) ( ) min→−⋅− rrrr ss . (2) 

This problem can be solved e. g. by the Newton method.  
As the next step we construct a special local coordinate system, introducing the third 

coordinate 3ξ  in the direction of the surface normal n , and keeping a surface point ),( 21 ξξr  
as a projection of the “slave” point: 
 ( ) ( ) nrrs

321321 ,,, ξξξξξξ += . (3) 

One should notice, that the projection procedure is taken into account within our local 
coordinate system. The Lie type derivative in the form of a covariant derivative [5] is used for 
any differential operation on the surface. For this we now consider the motion of the “slave” 
point in the local coordinate system, assuming that the “master” surface is moving. Within a 
static process, the time t  is treated as an incremental load parameter. Then the full time 
derivative of the “slave” point after taking into account Weingarten formula, known from 
differential geometry, and after some algebra transformation leads to the following 
expression:  
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where 
t
rv s
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=  is velocity of the “slave” point and v  is velocity of its projection onto the 

“master” surface respectively, and i
jh  are mixed components of the curvature tensor for the 

“master” surface.  
All further considerations are based on the following assumption: only the contact 

problem is considered, but not the  motion and deformation of the two body system connected 
by means of the normal vector with coordinate 3ξ ; the penetration 3ξ is assumed to be very 
small, as usual during the solution of contact problems.  

The global iteration procedure for the solution leads to a decreasing value of the 
penetration g . Thus, eq. (4) for the convective velocity, with the additional assumption 

03 =ξ  can be simplified to the form: 



 ( ) is
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For the time derivative of the third coordinate 3ξ , after taking a dot product with the normal 
n  and eq. (4) we have: 

 ( ) nvvs ⋅−=3ξ& , 2,1, =ji . (5) 

3. Variational equation for the contact. We define contact tractions cT , T  on the 
master surface cs  as well as on the slave surface s  in the current configuration respectively. 
On each surface the contact traction is split into the normal and tangential traction, e. g. for 
the master surface it has the form: 
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Then the weak equilibrium equation, having taken into account eq. (4) in the sense of 
variations, has the form: 
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One can show, that the main part of the contact integral (7) after consistent expansion into 
a Taylor series with the small parameter 3ξ  with taking into account the expansion for the 
convective velocity (5) has the following form: 
 ∫∫ +=
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Therefore, we have the description of the contact conditions of the first order with respect to 
the value of penetration 3ξ=g . 

4. Penalty regularization of the contact conditions. The condition of non-penetration 
into the “master” surface can be satisfied within the penalty method, which leads to the 
following functional:  
 ∫=

s
Nc gdsgW δεδ . (9) 

where Nε  is a penalty parameter, and •  is a Macauley bracket defined as follows: 
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which means that the contact (9) is taking into account only in the case of non-positive value 
of the penetration g .  

5. Linearization of the variation contact equation. The whole contact problem is 
nonlinear and can be solved by some of the iterative method, e.g. by Newton method. For this 
we have to calculate the constitutive derivative of the nonlinear system. Besides the global 
equilibrium equation we have to define the linearized equation of the variational contact 
integral (10). The fully linearized contact integral (9) has the following form:  

 =cWDδ   
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where )( gH −  is the Heaviside function, replacing the Macauley brackets. The full contact 
tangent matrix is then directly subdivided into the “main” part (11), the “rotational” part (12) 
and the “curvature” part (13).  

6. Finite element discretization. We consider details of the finite element 
implementation for in the case of “node-to-surface” approach. A contact element inherits the 
geometry from the finite element mesh of a contacting body, therefore, a nodal displacement 
vector is defined in the usual fashion: 
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where the first n nodes belong to the master surface, while the (n+1)’th node is the “slave” 
node. Introduce a position matrix A  and a matrix of the shape function derivatives iA : 
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After transformation of (11), (12), (13) we have the following part of the tangent matrix: 

the main part 
 ( )∫ ⊗−=
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the rotational part 
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the curvature part 
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The full normal tangent matrix is a sum of three parts: 
 )()()( crm KKKK ++= . (20) 

7. Numerical examples. The proposed procedure has been implemented into the finite 
element code FEAP-MeKA documented in [6]. Various shell structures were modeled with 



the family of “solid-shells” elements [7], [8]. The series of numerical examples serves to 
investigate the influence of different parts of the tangent matrix on the convergence of the 
iterative algorithm. Contact problems between a flexible structure and rigid surfaces of second 
order (cylinder and sphere) are investigated. Flexible structures were modeled as elastic shells 
satisfying the St. Venant material law. In order to investigate the corresponding contribution 
of each part of the tangent matrix, the following three alternatives are considered: a) use of 
the full tangent matrix; b) use the main part and the rotational part; c) use the main part and 
the pure curvature part; d) use only the main part. The number of equilibrium iterations at 
each load step gives the influence of each case on the convergence rate. Table 1 shows the 
number of equilibrium iteration (No) for the number of the load step (No l.s.) and the 
cumulative number of iteration (Cum. No) in the cases a, b, d mentioned above. The 

contribution of each part in eq. (20) is measured by the norm %100
)(

⋅
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presented in table 1 as well. Fig. 1 shows both the initial and the final state for bending a shell 
over a rigid cylinder and fig. 2 shows the case with bending a shell over a rigid sphere. A shell 
was clamped in both examples and loaded incrementally by prescribed displacements in the 
first example and by nonsymmetrical forces in the second example. The shell surface was 
represented as a “master” surface during computation.  

 
Figure 1. Initial and final state for bending a beam over a rigid cylinder. 

 
Figure 2. Initial and final state for bending a shell over a rigid sphere. 

8. Conclusions. The proposed kinematical approach for the development of a consistent 
contact tangent matrix allows to distinguish between three parts of a tangent matrix, namely 
the “main” part, the “rotational” part and the “pure curvature” part. The numerical examples 
show that in the case of linear approximations and aligned contact elements keeping of the 



“pure curvature” part is meaningless. If elements with higher order approximations are used, 
the influence of the “rotational” part is larger, but the influence of the “pure curvature” part 
remains still small. Therefore, the last part, which is computationally more expensive then the 
others, can be eliminated from the complete tangent matrix without loss of efficiency.  

 

Case a. Case b. Case d. 

No l.s.  No.  Cum. No. 210−⋅ε , 
% 

No l.s. No. Cum. 
No. 

No l.s. No. Cum. No. 

1 27 27 0.731 1 27 27 1 20 20 

2-23 4 115 7.382 2-22 4 111 2-8 4 48 

24 6 121 18.08 23 6 117 9-23 5 123 

25-33 4 157 16.26 24-33 4 157 24 6 129 

34 5 162 12.20 34 6 163 25-33 5 174 

35-100 4 426 17.32 35-100 4 427 34-48 6 264 

       49-58 5 314 

       59-68 6 374 

       69-85 7 493 

       86-100 8 613 

Table 1.  Bending over a rigid sphere. Biquadratic element. Influence of various parts of 
the tangent matrix on convergence.  
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