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KnHemaTunyecknii nofxof, OCHOBaHHbIA Ha pPacCMOTPEHUM YCIOBWIA KOHTaKTa C
TOUKM 3peHus audepeHLansHOW reoMeTpyn NOBEPXHOCTEN KOHTaKTa, MCNosb30BaH
0N NOCTPOEHMS BapWaUMOHHLIX YpaBHEHW, a Takke Ana WX  fiIMHeapusaLun.
KoBapuaHTHble angdepeHLpaibHbie onepawmm, HeobXo4uMble 41 3TOro, onpeseneHs! B
creumaibHO onpeaeNieHHOR cucTeme KOOPAMHAT, CBA3AHHOW C NOBEPXHOCTLIO KOHTaKTa.
370 NO3BONSET MONYYUTb KOHTAKTHYKO KAacaTe/lbHYH MaTpuLly >KECTKOCTU B YA06HOI
reoMeTpUYECKO (hopMe, CofepXKalLLleil «rnaBHy0», «NMOBOPOTHYHO» MATPULbl 1 MaTpULLY
«KPWMBW3Hbl KOHTAaKTHON MOBEPXHOCTM». [puMmepbl KOHTaKTa M3rmba nnacTMH npw
6ONbLUMX NepemMeLLeHMAX OKOMI0 MOBEPXHOCTe BTOPOro MOpsiAKa [eMOHCTPUPYIOT
3ptheKTUBHOCTb NOAX0AA, & TakXKe BNUSHME Pa3/IMiHbIX YaCTeil KOHTaKTHOW MaTpuLbl Ha
CXOLMMOCTb.

A kinematical approach, based on the consideration of contact from the surface
geometry point of view, is used for a consistent formulation of contact conditions and for
the derivation of the corresponding tangent matrix. Within this approach differential
operations are treated as covariant derivatives in the local surface coordinate system. The
main advantage is a more algorithmic and geometrical structure of the tangent matrix,
which consists of a “main”, a “rotational” and a pure “curvature” term. Representative
examples with contact and bending of shells modeled with linear and quadratic elements
over some classical second order geometrical figures serve to show situations where
keeping all parts of the tangent matrix is not necessary.

1. Introduction. From the variety of methods, which are mainly used for the solution of
contact problems, the “master-slave” concept is one of the most robust methods. This concept
is based on the determination of the penetration of the “slave” surface, represented by “slave”
nodes into a “master” surface. The penetration can be used for regularization methods like the
penalty method and the Augmented Lagrange multiplier method. The penalty method, see e.g.
Wriggers and Simo [1], Laursen and Simo [2], leads to the exact solution in the limit when the
penalty approaches infinity. In nonlinear contact problems the penetration is a function of the
current geometry and it is used for the “constitutive” model of the contact forces. For the
solution of nonlinear equilibrium equations by a Newton method the corresponding equations
have to be linearized. The main idea of the proposed kinematical approach is to consider the
global linearization separately from the local “slave” node searching procedure and derive
linearized equations from kinematic equations in the local surface coordinate system. It leads
to a very simple structure of the tangent matrix for the contact element, which is naturally
divided into a “main”, a “rotational” and a “pure curvature” parts. For extensive tests of the
proposed technique numerical examples with curved surfaces are performed. These tests serve
to check the influence of different parts of the contact matrix on convergence within a
nonlinear solution process.



2. Contravariant formulation of contact conditions. We introduce two coordinate
systems: a reference global coordinate system for the finite element discretization only and a
spatial local surface coordinate system in the contact consideration. All geometric properties
of the element as well as the differential operations will be described in the local coordinate
system of the “master” surface. A surface of this element is parameterized by local
coordinates gl,gz from the finite element discretization. We introduce surface coordinate
vectors in the usual fashion:
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As a necessary procedure to define the value of penetration, see in Wriggers [3] and Laursen

[4], the projection procedure of the contact node vector onto the master surface has to be
provided. Let ry be a position vector of a “slave” vector and r its projection onto the

“master” surface. Then the standard closest point procedure to define the value of the
penetration is written as the following extremal problem:

(s —r)-(rs —r)— min. ()

This problem can be solved e. g. by the Newton method.

ri:

As the next step we construct a special local coordinate system, introducing the third

coordinate és in the direction of the surface normal n, and keeping a surface point r(&l,gz)
as a projection of the “slave” point:

rs(§1,§2,§3)= r(él,&2)+§3n. (3)

One should notice, that the projection procedure is taken into account within our local
coordinate system. The Lie type derivative in the form of a covariant derivative [5] is used for
any differential operation on the surface. For this we now consider the motion of the “slave”
point in the local coordinate system, assuming that the “master” surface is moving. Within a
static process, the time t is treated as an incremental load parameter. Then the full time
derivative of the “slave” point after taking into account Weingarten formula, known from
differential geometry, and after some algebra transformation leads to the following
expression:

VS=v+§32—2+n§3+(rj—§3hijﬁ)§j, ij=12, @

where vg =%—f is velocity of the “slave” point and v is velocity of its projection onto the

“master” surface respectively, and h'j are mixed components of the curvature tensor for the
“master” surface.

All further considerations are based on the following assumption: only the contact
problem is considered, but not the motion and deformation of the two body system connected
by means of the normal vector with coordinate ge’; the penetration §3is assumed to be very
small, as usual during the solution of contact problems.

The global iteration procedure for the solution leads to a decreasing value of the
penetration g. Thus, eq. (4) for the convective velocity, with the additional assumption

és =0 can be simplified to the form:



gl zali(vg-v)r, i, j=12, (5)

For the time derivative of the third coordinate §3, after taking a dot product with the normal
n and eq. (4) we have:

£3=(vg—v)-n,i,j=12. (5)

3. Variational equation for the contact. We define contact tractions T,, T on the
master surface s. as well as on the slave surface s in the current configuration respectively.

On each surface the contact traction is split into the normal and tangential traction, e. g. for
the master surface it has the form:

T=Nn+g's. (6)

Then the weak equilibrium equation, having taken into account eg. (4) in the sense of
variations, has the form:

SWe = [ N6§3ds+j[aijT‘6a ids +& 371 fon -1 — hay e ]as. )
S S

One can show, that the main part of the contact integral (7) after consistent expansion into
a Taylor series with the small parameter és with taking into account the expansion for the
convective velocity (5) has the following form:

SW = [ N&E 3ds + [ a; T'68 Ids. (8)
S S
Therefore, we have the description of the contact conditions of the first order with respect to
the value of penetration g =§3 .
4. Penalty regularization of the contact conditions. The condition of non-penetration

into the “master” surface can be satisfied within the penalty method, which leads to the
following functional:

W = [en (g)gds . ©)

S

where gy IS a penalty parameter, and <.> is a Macauley bracket defined as follows:

_[0,ifg>0 (10)
< >_{g,ifgso’

which means that the contact (9) is taking into account only in the case of non-positive value
of the penetration g .

5. Linearization of the variation contact equation. The whole contact problem is
nonlinear and can be solved by some of the iterative method, e.g. by Newton method. For this
we have to calculate the constitutive derivative of the nonlinear system. Besides the global
equilibrium equation we have to define the linearized equation of the variational contact
integral (10). The fully linearized contact integral (9) has the following form:

DSW, =



= [enH(-9)(6rs —3r)- (n®n)(vs —v)ds - 11)

S

~ [enH0)gbr -l (1@ 1 )vs ~v)+ (1, —r)-al (1 @ s - (12)

—IsNH(—g)g(SrS—Sr)-hij(q ®rijS—v)ds, (13)
S
where H(—g) is the Heaviside function, replacing the Macauley brackets. The full contact
tangent matrix is then directly subdivided into the “main” part (11), the “rotational” part (12)
and the “curvature” part (13).

6. Finite element discretization. We consider details of the finite element
implementation for in the case of “node-to-surface” approach. A contact element inherits the
geometry from the finite element mesh of a contacting body, therefore, a nodal displacement
vector is defined in the usual fashion:

uT = {ufl),ugl)ugl)’u{Z),ugZ)USZ),m’u{n),ugn)ugn),u£n+l),u§n+1)ugn+l) } (14)

where the first n nodes belong to the master surface, while the (n+1)’th node is the “slave”
node. Introduce a position matrix A and a matrix of the shape function derivatives A :

N, 0 0 Nb 0O 0 .. N, 0 0 100
A=0 N 0 0 N, O .. 0 N, 0O 0 1 Of (15)
0O 0 NN 0 0 N, .. 0 O N, 001
N;j 0 0 Npj 0 0 .. Npjj 0 0 000
Ai=| 0 Nyjj 0 0 Npj 0 .. 0 Npj 0 00 0f (16
0 0 Ngjj 0 0 Npj .. 0 0O Nyj 000

After transformation of (11), (12), (13) we have the following part of the tangent matrix:

the main part

K (M) =8NJ‘H(—g)AT (n®n)Ads; (17)
S
the rotational part
KD = ey [H (—g)g(AT,j -all(n@r)A+AT (5r; —5r)-al (rj ® n)A,i)ds ; (18)
S
the curvature part
K© = ¢y | H(-g)gAThil (5 ® g )Ads. (19)

S
The full normal tangent matrix is a sum of three parts:
K =KM L k() k() (20)

7. Numerical examples. The proposed procedure has been implemented into the finite
element code FEAP-MeKA documented in [6]. Various shell structures were modeled with



the family of “solid-shells” elements [7], [8]. The series of numerical examples serves to
investigate the influence of different parts of the tangent matrix on the convergence of the
iterative algorithm. Contact problems between a flexible structure and rigid surfaces of second
order (cylinder and sphere) are investigated. Flexible structures were modeled as elastic shells
satisfying the St. Venant material law. In order to investigate the corresponding contribution
of each part of the tangent matrix, the following three alternatives are considered: a) use of
the full tangent matrix; b) use the main part and the rotational part; c) use the main part and
the pure curvature part; d) use only the main part. The number of equilibrium iterations at
each load step gives the influence of each case on the convergence rate. Table 1 shows the
number of equilibrium iteration (No) for the number of the load step (No I.s.) and the
cumulative number of iteration (Cum. No) in the cases a, b, d mentioned above. The
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presented in table 1 as well. Fig. 1 shows both the initial and the final state for bending a shell
over arigid cylinder and fig. 2 shows the case with bending a shell over a rigid sphere. A shell
was clamped in both examples and loaded incrementally by prescribed displacements in the
first example and by nonsymmetrical forces in the second example. The shell surface was
represented as a “master” surface during computation.

—0

contribution of each part in eq. (20) is measured by the norm ¢ = -100% and

Figure 1. Initial and final state for bending a beam over a rigid cylinder.

Figure 2. Initial and final state for bending a shell over a rigid sphere.

8. Conclusions. The proposed kinematical approach for the development of a consistent
contact tangent matrix allows to distinguish between three parts of a tangent matrix, namely
the “main” part, the “rotational” part and the “pure curvature” part. The numerical examples
show that in the case of linear approximations and aligned contact elements keeping of the



“pure curvature” part is meaningless. If elements with higher order approximations are used,
the influence of the “rotational” part is larger, but the influence of the “pure curvature” part
remains still small. Therefore, the last part, which is computationally more expensive then the

others, can be eliminated from the complete tangent matrix without loss of efficiency.
Case a. Case b. Case d.
No l.s. | No. | Cum. No. e .10—2, No l.s. | No. Cum. No l.s. | No. | Cum. No.
% No.
1 27 27 0.731 1 27 27 1 20 20
2-23 4 115 7.382 2-22 4 111 2-8 4 48
24 6 121 18.08 23 6 117 9-23 5 123
25-33 4 157 16.26 | 24-33 4 157 24 6 129
34 5 162 12.20 34 6 163 25-33 | 5 174
35-100 | 4 426 1732 | 35-100| 4 427 34-48 | 6 264
49-58 | 5 314
59-68 | 6 374
69-85 | 7 493
86-100 | 8 613

Table 1. Bending over a rigid sphere. Biquadratic element. Influence of various parts of
the tangent matrix on convergence.
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