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Abstract
A special contact formulation which is compatible with the so-called ’Solid-Shell’ is developed
for applications involving large deformation and frictional contact. The contact conditions are
considered in the covariant form from the surface geometry point of view, which is very similar
to shell theory. The contact integral and the necessary kinematical values are considered on the
tangent plane of the contact surface for which a special surface coordinate system is introduced.
A focus is on the regularization of the frictional conditions, which leads to evolutions equations
in the form of covariant derivatives. A geometrical interpretation of these equations as the
parallel translation is used to overcome the problem of discontinuity of the characteristics
on element boundaries. The main advantage of the developments is a more algorithmic and
geometrical structure of the tangent matrix.

Different integration techniques based on higher order integration formulae as well as based
on the subdivision of the contact area into subdomains allow to construct elements with di-
minishing error for the contact patch test in the non-frictional case. The segment-to-segment
and the segment-to-analytical surface approaches are developed for the frictional problems with
large sliding. Within the numerical examples the focus is also on the effect where a 3D contin-
uum approach as e.g. for the solid-shell elements appears to be beneficial in the context with
frictional contact.

1 INTRODUCTION

Frictional contact is a specific interaction between bodies contacting each other along surfaces,
therefore, the change of these surfaces in the covariant form can be described by differential
geometry. An essential feature to model frictional contact problems is the formulation of the
contact conditions as kinematical constraints which leads to a nonlinear problem and, therefore,
within the correct description of the solution process, to a consistent linearization problem. The
development of the finite element description for the frictional problem is documented in the
following references: [1], [2], [3], [4]. A series of publications are devoted to the development of
the so-called smooth contact conditions, see [4], [5], [6].

In this contribution we propose a fully covariant description of contact which can be applied
for arbitrary smooth surfaces. The contact conditions are considered in a specially defined spa-
tial local coordinate system including the well-known closest point procedure. This coordinate
system is chosen on the surface of the so-called ”solid-shell” elements, described in details in [7]
and [8]. All differential operations necessary for kinematics and linearization are considered as
covariant derivatives. Special attention is on the consideration of the operations and the weak
form on the tangent plane. The constitutive equations for the tangential tractions within the
penalty regularization, named here as the evolution equations, are considered in the covariant
description as a parallel translation on the contact surface. It is important to use this form of
the constitutive equations, because the consistent linearization of the contact integral together
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with these equations leads to the correct symmetrical form of a tangent matrix in the case of
sticking. We have to note that an artificial non-symmetry of the tangent matrix in 3D was
mentioned in Laursen and Simo [2]. In order to overcome this e.g. Wriggers proposed in [10]
the regularization of the stick conditions based on a functional used in mesh tying procedures.
In the current contribution the geometrical interpretation of the parallel translation allows also
to develop an integration scheme for the tangential tractions and to overcome the problem of
the discontinuity of the history variables at element boundaries, which was also discussed e.g.
in Krstulovic-Opara et. al. [5] and Puso and Laursen [6].

The introduction of the local coordinate system allows also to treat the case of contact with
rigid surfaces, which is often used in metal-forming problems. The projection procedure in this
case is then turned into the definition of the penetration directly from the surface equation.

The integration of the contact integral leads to a problem of integrating a discontinuous
integrand, therefore, the integration with subdomains as an example for an adaptive technique
is proposed to improve the results for the patch test. For further investigations a series of contact
elements including a different approach for the evaluation of the contact integral is considered to
check the effect of the numerical integration more closely. Finally, after demonstrating the effect
of various integration schemes on some simple examples, a sheet metal forming example with
rather industrial content is taken to demonstrate various characteristics within this process.

2 GEOMETRY AND KINEMATICS OF CONTACT

We consider two interacting bodies (Figure 1) which are coming in contact, if a ”slave” point S
of the second surface penetrates into the ”master”surface. Penetration is defined as the shortest
distance between the two surfaces of the contacting bodies.
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Figure 1: Two body contact. Local surface coordinate system on master surface.

As contact between two bodies is dominantly an interaction between these two surfaces, the
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main aim of the following consideration is to take advantage of the differential geometry of the
contact surfaces in order to describe the kinematics of the contact conditions.

2.1 Spatial coordinate system

Assuming the projection procedure to be computed, we define the ”slave” point S via the
following equation

~r(ξ1, ξ2, ξ3) = ~ρ + ξ3~n, (1)

where ~ρ is a vector of the penetration point C on the ”master” surface, ~n is the surface normal.
Eqn. (1) defines a 3D coordinate system. A value of the penetration g, essential for formulating
the non-penetration conditions in contact mechanics, is exactly the third coordinate in our
surface coordinate system:

ξ3 = g = (~rs − ~ρ) · ~n. (2)

The equilibrium equations for contact will now be formulated in the defined local coordinate
system, and since contact is an interaction between surfaces, each necessary equation especially
for the linearization will be considered on the tangent plane, i.e. at ξ3 = 0. For this, we define
all the geometrical and differential characteristics with special attention on their values on the
tangent plane.

The base vectors of the coordinate system are given as

~ri =
∂~r

∂ξi
= ~ρi + ξ3~ni = (ak

i − ξ3hk
i )~ρk, i = 1, 2, ~r3 = ~n, (3)

where the ak
i terms are components of the metric tensor and the hk

i terms are components of
the curvature tensor. The covariant components of the metric tensor of the spatial coordinate
system are defined via the dot product of the vectors given in eqn. (3).

gij = (~ri · ~rj) = aij − 2 ξ3hij + (ξ3)2hikh
k
j , i = 1, 2 gi3 = 0, g33 = 1. (4)

2.2 Differential characteristics

Two important kinematical characteristic quantities are the convective velocities of the ”slave”
point and the full time derivative of a vector in the tangent plane.

Taking a full time derivative of eqn. (1) we obtain:

d

dt
~rs(t, ξ

1, ξ2, ξ3) =
∂~ρ

∂t
+

∂~ρ

∂ξj
ξ̇j +

∂~n

∂t
ξ3 + ~nξ̇3 +

∂~n

∂ξj
ξ̇j. (5)

Convective velocities ξ̇i are obtained after evaluating the dot product of the full time derivative
(5) and of the base vectors in (3). After some algebraic operations they get the following form:

ξ̇3 = ġ = (~vs − ~v) · ~n, (6)

and

ξ̇j = âij

[

(~vs − ~v) · ~ρi − ξ3

(

∂~n

∂t
· ~ρi + hk

i (~vs − ~v) · ~ρk

)]

, (7)

where âij are components of the inverse matrix [aij − 2ξ3hij + (ξ3)2hk
i hjk].

Assuming that the value of the penetration g remains always small, each characteristic
quantity is considered on the tangent plane. This is a main feature of the velocity description
which leads to a simple form of the tangent matrix and an efficient application to non-frictional
problems, see Konyukhov and Schweizerhof [9]. Thus, having taken ξ3 = 0, we obtain the
values of the convective velocities (7) on the tangent plane as
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ξ̇j = aij(~vs − ~v) · ~ρi. (8)

The full time derivative of an arbitrary vector ~T in the spatial coordinate system computed
in convective coordinates ξ1, ξ2, ξ3 via covariant derivatives is a frame indifferent derivative and
coincides with the Lie time derivative Lt defined in the form

Lt
~T := F

d

dt
(F−1 ~T ) =

d

dt
~T (9)

where F is a push-forward and F−1 a pull-back operator. The Lie time derivative is a standard
mathematical tool for the linearization, therefore, the computation of the covariant derivatives
will be employed for further linearization. Let ~T be now the vector of tangential tractions in
the tangent plane in covariant components, i.e.

~T = Ti~r
i|ξ3=0 = Ti~ρ

i. (10)

Its full time derivative is computed employing the covariant derivatives

dTi

dt
=

∂Ti

∂t
+

(

∂Ti

∂ξj
− Γk

ijTk

)

ξ̇j + hk
i Tkξ̇

3, (11)

where Γk
ij are surface Christoffel symbols.

3 WEAK FORMULATION IN THE SPATIAL COORDINATE SYS-
TEM

Now we consider the contact tractions ~T1 and ~T2 on both contact surfaces s1 and s2 in the
current configuration. Assuming δ~ui as a variation of the displacement field on the surface si

and equilibrium at the contact boundary ~T1ds1 = −~T2ds2, the work of the contact forces is
determined in the following integral

δWc =

∫

s1

~T1 · (δ~u1 − δ~u2)ds1. (12)

The integral in (12) is considered in the local coordinate system, therefore, up to this point one
surface was specified as master surface and the other as slave surface. With s1 as slave surface,
the previous notation is now slightly redefined:

• ~u1 = ~rs is a slave point;

• ~u2 = ~ρ is a projection of the slave point onto the master surface;

the traction vector in the local coordinate system becomes then:

~T1 = ~T = N~n + Ti~ρ
i. (13)

Using the kinematical dependencies from eqn. (5) and decomposing the contact force as in
eqn. (13), the contact integral is cast into the following form:

δWc =

∫

s

Nδξ3ds +

∫

s

[Tiδξ
i + ξ3Ti(δ~n · ~ρ i − hi

jδξ
j)]ds. (14)

The full integral must be considered with the variation of the convective coordinates for
which from eqn. (6) the penetration is obtained as the third coordinate g = ξ3 in the form

δξ3 = δg = (δ~rs − δ~ρ) · ~n, (15)
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and from eqn. (7) the convective coordinate ξj are found in the form

δξj = âij
[

(δ~rs − δ~ρ) · ~ρi − ξ3
(

δ~n · ~ρi + hk
i (δ~rs − δ~ρ) · ~ρk

)]

. (16)

The full formulation with eqns. (14), (15), (16) in the local coordinate system is very
cumbersome. However, as the value of penetration g must be small during the solution, which
is an important feature of the current velocity description, we consider the full contact integral
only on the tangent plane, i.e. ξ3 = 0. Thus, the following form remains:

δWc =

∫

s

Nδgds +

∫

s

Tjδξ
jds = (17)

=

∫

s

N(δ~rs − δ~ρ) · ~nds +

∫

s

Tja
ij(δ~rs − δ~ρ) · ~ρids,

which is accompanied by the variation of the convective coordinates on the tangent plane in
the form:

δξj = aij(δ~rs − δ~ρ) · ~ρi. (18)

It must be noted that the formulation of the contact integral in the form presented in eqn.
(17) is mostly used in contact mechanics, see e.g. Wriggers [10] and Laursen [11].

4 REGULARIZATION AND LINEARIZATION

We will use the standard regularization technique as described e.g. in Wriggers [10] and Laursen
[11], which is based on an elasto-plastic analogy to model Coulomb friction.

The normal traction N is represented by the penalty method as

N = εN 〈g〉, (19)

where εN is a penalty parameter and 〈〉 are Macauley brackets.
For the regularization of the tangential contact traction we propose a rate equation based

on usage of the covariant derivatives, see eqn. (11), in the following form:

dTi

dt
= (−εT aij + Γk

ijTk)ξ̇
j − hk

i Tkξ̇
3 (20)

The system of ordinary differential equations for the computation of the tangential traction
(20) is taken as the evolution equations, which are important for the linearization process. Using
the form with the covariant derivatives (20) leads to a symmetrical tangent matrix for sticking.
Based on the geometrical interpretation of the covariant derivative as a parallel translation the

following equation for trial covariant components (T tr)
(n+1)
i of the tangential traction vector is

obtained

(T tr)
(n+1)
i = T

(n)
k akj

(n) (~ρ
(n)

j · ~ρ
(n+1)

i ) − εT ∆ξka
(n+1)
ik (21)

where ∆ξk is defined as

∆ξk =



































(∆~ρ · ~ρj) akj

(n+1) for segment-to-segment (STS) and

node-to-segment (NTS) approaches, with

∆~ρ = (~ρC(n) + ~uC(n)) |ξ1
(n)

, ξ2
(n)

− ~ρC(n+1) |ξ1
(n+1)

, ξ2
(n+1)

(~u · ~ρj)a
kj

(n+1) for segment-to-analytical surface (STAS) approach

(22)

5



where ξi
(n+1) and ξi

(n) are convective coordinates of the projection point ~ρC at the load step

(n + 1) and (n) respectively; and ~uC(n) is the incremental displacement vector of the projection
point.

Afterwards, the return mapping in the standard form, Wriggers [10] and Laursen [11], is
applied.

4.1 Linearization

The contact integral in eqn. (17) is computed over the ”slave” surface, which is defined by a
set of ”slave” points. Each parameter in the contact integral is considered in the spatial local
coordinate system of the ”master” surface, i.e. as a function of the convective coordinates ξ i.
Therefore, the linearization of the ”slave” surface element ds will not enter the linearization
process. Thus ds is assumed to remain constant within the linearization.

The idea behind the forthcoming linearization is the application of the covariant derivatives
consequently to the normal part of the contact integral and to each part of the return-mapping
algorithm together with the evolution equations (20) and considering their values on the tangent
plane. This is a quite cumbersome process for which we only present the final result.

The normal part of the contact integral (17) has the following form:

δW N
c =

∫

s

εN〈g〉δgds =

∫

s

εN 〈(~rs − ~ρ) · ~n〉 (δ~rs − δ~ρ) · ~nds. (23)

The linearization of eqn. (23) leads to:

D(δW N
c ) =

=

∫

S

εN H(−g) (δ~rs − δ~ρ) · (~n ⊗ ~n)(~vs − ~v)dS− (24)

−

∫

S

εN H(−g) g
(

δ~ρ,j · a
ij(~n ⊗ ~ρi)(~vs − ~v) + (δ~rs − δ~ρ) · aij(~ρj ⊗ ~n)~v,i

)

dS− (25)

−

∫

S

εN H(−g) g (δ~rs − δ~ρ) · hij(~ρi ⊗ ~ρj)(~vs − ~v)dS. (26)

For the details of the linearization of the normal part δW N
c and the application to the

non-frictional problems we refer to Konyukhov and Schweizerhof [9].
The tangential part of the contact integral (17) has the following general form:

δW T
c =

∫

s

Tja
ij(δ~rs − δ~ρ) · ~ρids, (27)

Restricting us here to the sticking case only, the linearized functional becomes

Dv(δW
T
c ) =

−εT

∫

s

(δ~rs − δ~ρ)aij~ρi ⊗ ~ρj(~vs − ~v)ds (28)

−

∫

s

Ti

(

(δ~rs − δ~ρ) ailajk ~ρk ⊗ ~ρl ~vj + δ~ρ,j aikajl ~ρk ⊗ ~ρl (~vs − ~v)
)

ds (29)

+

∫

s

Tih
ij(δ~rs − δ~ρ) · (~ρj ⊗ ~n + ~n ⊗ ~ρj) (~vs − ~v)ds. (30)

As sticking is a conservative problem a symmetric form is found.
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For efficiency considerations it is an interesting issue that the contact tangent matrix can be
subdivided into three parts: the ”main”or ”constitutive”part eqn. (24) and (28), the ”rotational”
part (25) and (29) and the ”curvature” part (26) and (30). The ”main” part contains a tensor
product of surface coordinate vectors: these are the normal ~n and the surface base vectors
~ρi for normal and tangential parts of the tangent matrix respectively and represent stiffnesses
in both directions. The ”rotational” part contains derivatives of δ~ρ and ~v with respect to the
convective coordinates ξj and, therefore, represents the rotation of a contact surface during the
incremental solution procedure. The ”curvature” part contains components of the curvature
tensor hij and, therefore, represents the change of the curvature of the master surface.

5 COMPUTATION OF THE CONTACT INTEGRAL

Within the finite element method the contact integral in eqn. (17), leading to the residual,
as well as the integrals in the linearized equations leading to the consistent tangent matrix,
have to be computed using one or another quadrature formulae. In the most common approach
known as “node-to-surface” (NTS) technique the value at the nodes from the finite element
discretization of the “slave” part is taken directly. As it is known, this technique can be only
directly applied in the case of linear approximations for both “slave” and “master”parts, see [1],
and it does not satisfy the patch test, see [13]. This fact can be explained as under-integration of
the contact integral, because the Lobbatto quadrature formula with only two integration points
gives exactly a nodal collocation formula in this case. As an improvement different quadrature
formulae of higher order can be used. Then the question arrises: how many integration points
have to be taken in order to achieve a certain error bound? The usual formula to estimate
the integration error does not give the correct answer, because it requires the differentiability
of the integrand up to the certain order. However, this is not the case for the computation
of the contact integral, which is discussed in the following: The function in the integral is
defined on the master element, but the computation of the integral has to be done over the
unknown slave surface. In practice, the penetration of “slave” points, e.g. integration points,
from different “slave” segments into the master segment is checked. This can be considered as
integration of auxiliary functions over the known master surface which again define a function
which is discontinuous on the master surface. The a-priori error estimation in the case of
the application of Gauss quadrature rules for discontinuous functions is a more complicated
question, because it is necessary to know the behavior of the integrand, see e.g. [12]. However,
this is in general not known in the considered cases of rather arbitrary contact surfaces. One
can only expect, that increasing the number of integration points leads to a reduction of the
integration error. As an alternative an adaptive technique to decrease the integration error a
subdivision of the integration area into subdomains together with lower order integration in
each subdomain is suggested, see e.g. [12]. This leads to a considerable improvement of the
characteristics for the patch test.

6 CONTACT WITH RIGID SURFACES DESCRIBED BY ANA-

LYTICAL FUNCTIONS

If a body contacts a rigid surface, the latter one is chosen as a ”slave” surface in our description,
but the integration will be done over the ”master” surface. The rigid surface is then parame-
terized by internal coordinates α1, α2. Then a point ~rs of this surface has to satisfy eqn. (1) as
a point in the local coordinate system of the contact element too. This condition leads to the
following equation
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~rs(α
1, α2) = ~ρ(ξ1, ξ2) + ξ3~n. (31)

The ”slave”point projection procedure, which was necessary for the previous description with
surface segments, now turns into the determination of the surface point defined by equation (31).
Using a ”segment-to-segment” (STS) type strategy for the computation of the contact integral,
first integration points ξ1

I , ξ
2
J are defined on the ”master” segment and then the corresponding

internal coordinates α1, α2 of the rigid surface as well as the penetration ξ3 are computed e.
g. by the Newton method. For this algorithm we define a function F (α1, α2, ξ3) with the
components given in eqn. (31)

F =





xs1 − x1 − n1ξ
3

xs2 − x2 − n2ξ
3

xs3 − x3 − n3ξ
3



 with xi = xi(ξ
1, ξ2). (32)

Its derivative with respect to the coordinates (α1, α2, ξ3) is:

F′ =





xs1,1 xs1,2 −n1

xs2,1 xs2,2 −n2

xs3,1 xs3,2 −n3



 . (33)

Then, the Newton iteration procedure reads as follows for iteration step n:

∆αn =





∆α1
n

∆α2
n

∆ξ3
n



 = −(F′)−1
n Fn, (34)

αn+1 = αn + ∆αn.

For some analytical surfaces, the solution of eqn. (34) is simplified. Surfaces of revolution
and cylindrical surfaces are among them. Some simple surfaces, such as plane surface, cylinder,
sphere and torus even allow to define the value of the penetration directly.

We consider surfaces of revolution, defined by curve f(r) uniquely projected onto the r axis,
see Fig. 2. The revolution of the curve about axis OZ gives a surface of revolution. In a
Cartesian coordinate system it can be written as

rs(r, φ) =





xs

ys

zs



 =





r cos φ
r sin φ
f(r)



 . (35)

Then the iteration vector ∆αn in eqn. (34) gets the following form:

∆αn =





∆rn

∆φn

∆ξ3
n



 (36)

with

∆rn =
1

D
· ((x3 − f(r))(n1 cos φ + n2 sin φ) + n3(r − x1 cos φ − x2 sin φ))

∆φn =
1

r · D
· ((f(r) − x3 − rf ′(r))(n1 sin φ − n2 cos φ) + f ′(r)(n1x2 − n2x1)

+n3(x1 sin φ − x2 cos φ))

∆ξ3
n =

1

r · D
·
(

f ′(r)(x1 cos φ + x2 sin φ − r) + f(r) − x3 + ξ3[f ′(r)(n1 cos φ + n2 sin φ) − n3]
)

with
D = −n3 + f ′(r)(n1 cos φ + n2 sin φ).
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Figure 2: Surface of revolution as an analytical contact surface.

7 NUMERICAL EXAMPLES

7.1 Patch test. Non-frictional case.

Here we consider the application of the segment-to-segment contact approach with various
integration schemes to the modified patch test problem without friction, originally proposed
in Crisfield [13] for the 2D patch test. The upper block has dimensions 1 × 1 × 0.5 and it is
meshed with a regular rectangular mesh 3 × 3 × 2. The lower block has the same geometry as
the upper block, and has a finer, but distorted mesh 6 × 6 × 2, see Fig. 3. Both blocks are
made of elastic material with the following parameters: Youngs modulus E = 1.0 · 105, Poisson
ratio ν = 0.3. The value of the penalty is chosen as ε = 1.0 · 107. During contact the upper
block is considered as a slave. An uniform vertical displacement of ∆ = 0.05 is applied on the
top surface.

The integration algorithm based on integration of subdomains is an approximate approach
to integrate discontinuous functions. Here we show, that with this technique it is possible to
construct a sequence of results with diminishing error to finally satisfy the patch test. In order
to investigate the normal contact traction N for uniform stresses, the normal stress σz and
the vertical nodal displacement uz of the contact surface of the lower block are chosen. Their
values are controlled by the mean value x̄, while the standard deviation σ and the coefficient
of variation Cv = 100% · σ/x̄ are computed to estimate the variation. In table 1 the results
concerning the mean value and the coefficient of variation for the following quantities are given:
sum of contact tractions N = εpgN over the surface, computed at Gauss points of the contact
surface; normal stresses σz, computed for the upper and lower surface of each element of the
lower block; nodal vertical displacements uz for the contact surface. For comparison, the first
computation was made for the node-to-surface approach with a reduced penalty value of 105

due to the convergence problems in this case. As is known, this approach fails the patch test
and, as expected, leads here to the maximum of the coefficient of variation.

From table 1 it becomes clear that the integration with subdomains leads to smaller variations
than an algorithm with standard Gauss integration. It appears rather remarkable for this
application that the variations of the tractions remain constant while the variation of the
stresses and displacements falls below one percent.
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upper block

lower block

contact surface of lower block

Figure 3: Blocks for the patch test in analogy to [13]. Upper block – regular mesh. Lower block – distorted
mesh.

No. Gpt No. sbd. tractions N stress σz displ. uz

x̄ · 104 v % x̄ · 103 v % x̄ · 10−2 v %

NTS∗ 1 -1.3084 -68.087 -1.5248 -120.039 -0.9150 -157.93
2 1 -1.7767 -21.474 -4.6787 -2.5772 -2.4286 -7.7430

6 1 -1.6738 -19.851 -4.7077 -1.1663 -2.4143 -1.5571
3 2 -1.6210 -16.760 -4.7137 -0.8570 -2.4180 -1.2770
2 3 -1.6354 -17.331 -4.7115 -0.8789 -2.4170 -1.4131

10 1 -1.6614 -19.696 -4.7109 -0.8595 -2.4150 -1.3121
2 5 -1.6477 -15.793 -4.7113 -0.7798 -2.4166 -1.2097
5 2 -1.6408 -17.572 -4.7139 -0.7942 -2.4160 -1.2383

20 1 -1.6537 -19.226 -4.7124 -0.7791 -2.4164 -1.1597
10 2 -1.6408 -16.667 -4.7128 -0.7585 -2.4159 -1.1304
4 5 -1.6299 -16.790 -4.7141 -0.7136 -2.4158 -1.0822
5 4 -1.6447 -16.395 -4.7125 -0.7239 -2.4154 -1.1190
2 10 -1.6337 -16.341 -4.7126 -0.7578 -2.4170 -1.1335

Table 1: Patch test. Influence of different integration schemes. Mean value and coefficient of variation for the
following quantities: contact tractions N on the contact surface, normal stresses σz in the lower block
and vertical nodal displacements uz on the contact surface. NTS∗ - node-to-surface approach.

7.2 Free bending of a metal sheet on two cylinders

A second example is the free bending problem of a metal sheet (thickness t = 0.25) with
an elasto-plastic material law with the following material data: κ = 1.75 · 104 kN/cm2; µ =
8.077 · 103 kN/cm2; y0 = 16 kN/cm2; εp = 10 kN/cm3, given in fig. 4.

At the beginning the metal sheet is positioned on two cylindrical rigid bodies (fig. 4). As
loading a displacement u is prescribed in the center of the sheet. Due to symmetry only one half
of the system has to be modeled and discretized using 12 bilinear resp. 6 biquadratic elements
and a rather fine mesh with 100 bilinear resp. 50 biquadratic elements. The surface of the
rigid cylinder is described analytically, the metal sheet is the ”master” part. Fig. 5 contains
the results for the computation of the overall force with bilinear elements for the metal sheet.
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The Gauss integration formulae with 2× 2, 3× 3, 7× 7 and 10× 10 integration points are used
and the results are compared with those obtained with a refined mesh of 100 elements, with 1
Gauss point only for non-frictional case. It is obvious, that the quadrature formulae with 2× 2
integration points leads to rather large oscillations. A comparison with the frictional case for
the following friction coefficients: µ = 0.1, µ = 0.2, µ = 0.3 is presented in Fig. 6, where the
computation was performed with the ”best” 10× 10 integration formula. As an obvious result,
the reaction force is increasing following the modification of the friction coefficient.
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Figure 4: Geometry of free bending on two cylinders

0

5

10

15

20

25

0 2 4 6 8 10 12

F
or

ce

Displacement

2 Gpt
3 Gpt
7 Gpt

10 Gpt
100 el.; 1 Gpt

Figure 5: Force-deflection curves for free bending problem; bilinear elements; contact against analytically defined
contact surface; influence of the number of Gauss points

The next step is to consider the influence of the number of Gauss points for the sheet meshed
with biquadratic elements.

In fig. 7 the results of the computation for the beam meshed with 6 elements are given
when a) the integration formula with 6 × 6 integration points and as an alternative b) the
integration formula with 2 subdomains and 3 × 3 integration points in each and c) with
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Figure 6: Force-deflection curves for free bending problem; influence of the choice for the friction coefficient;
10 × 10 Gauss points

3 subdomains and 2 × 2 integration points are used. The results are compared with those
obtained with a refined mesh for the beam meshed with 12 elements and 3 × 3 integration
points. For further comparison a 50 element mesh and 2 × 2 integration points per element is
chosen. The density of the Gauss points to check the penetration is identical in the first three
cases, but as a consequence of the smallest a-priori integration error for the algorithm with
subdomains, the latter leads to the best reduction of the oscillations.

7.3 Deep drawing of a circular cylindrical part with a counter die

In this numerical example the deep drawing process of a cylindrical part with counter die is
simulated, see the geometry in Fig. 8. The material of a circular plate is elasto-plastic with
the following parameters: κ = 1.75 · 104 kN/cm2; µ = 8077 kN/cm2; y0 = 16 kN/cm2.

The circular sheet has a uniform thickness t = 1 mm and a radius RS = 8 cm. The geometry
of the tools is shown in fig. 8. Due to symmetry only a quarter of the structure is discretized
using a mesh with 402 nodes. The contact surfaces of the rigid tools can be defined either as
combination of plane surface, cylinder and torus, or as a surface of revolution, see sect. 6. As
loading a displacement u is applied incrementally with ∆u = 0.0025 for the punch, as well as
for the counter die but for the latter after the punch is contacting the counter die. It can be
seen from the deformation in Fig. 11 that the blank is dominantly drawn along the upper part
of the die and the punch. The total force acting on the punch is computed as an integral over
the contact area using the same number of integration points which were used for the contact
integral and the tangent matrix. Fig. 9 contains the ”total force-displacement” diagram for the
punch computed for the following cases:
a) Non-frictional case. Integration: 5 Gauss points with 4 subdomains;
b) Frictional case with µ = 0.1 and µ = 0.15. Integration: 6 Gauss points.
Within the frictional analysis the contact between the punch and the sheet assumed to be
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Figure 8: Geometry for deep drawing process

frictionless.
One of the advantages of the ”solid-shell” formulation is ability to obtain the thickness strain,

which can be crucial characteristics if the friction has been taken into account. Fig. 10 shows
the thickness strain computed for the frictional case with the friction coefficient µ = 0.15 at
the point A with a radial coordinate R = 4.8cm, see diagram 11 d). As it can be seen from
fig. 10, a frictional analysis gives twice as much of the strain thickness in comparison with the
frictionless one.
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8 CONCLUSIONS

• In the present contribution a fully covariant description of the contact condition and lin-
earization in the case of Coulomb friction is proposed. A specially defined local coordinate
system corresponding to the one used for closest point projection procedure was taken as a
basis. All differential operations necessary for the linearization can be defined as covariant
derivatives in that system.

• Several contact approaches are generalized under the unified description which leads to
the segment-to-segment contact element and to the segment-to-analytical surface contact
element. The last appears especially useful for applications in sheet metal forming where
rigid tools can be commonly defined by arbitrarily smooth functions for the geometries.
In this case the well-known closest point procedure can be turned into the computation of
the value of penetration from the surface equations directly.

• An adaptive integration technique based on using subdomains is also proposed to overcome
the problem of integration of a discontinuous function which appears during solution of
the contact problem. It allows to considerably improve the characteristics in the contact
patch test as well as to decrease oscillations of the force-deflection curves for relatively
coarse meshes during the contact analysis.

• As an example of a realistic metal forming process a deep drawing of a sheet into a
cylindrical pot is chosen. Here the ability of the ’Solid-Shells’ to simulate complex forming
processes with 3D effects with particular attention on the thickness strain together with
the introduced contact formulations can be shown. The particular influence of friction on
the some results characteristics is discussed.
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a) u = 0.00 cm

b) u = 1.25 cm

c) u = 2.50 cm

d) u = 3.75 cm
A: R = 4.80 cm

d) u = 5.00 cm

Figure 11: Deep drawing process. Blank at various deformation states for µ = 0. Von Mises stresses for the
sheet.
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