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Eduard Ewert · Karl Schweizerhof ·

Peter Vielsack

Measures to judge the sensitivity of
thin-walled shells concerning stability
under different loading conditions

Abstract In standard stability investigations of structures applying the fi-
nite element method usually the bifurcation and snap-through points – so-
called stability points – are detected. However, for practical design purposes
not only the stable state of equilibrium itself is significant but also the ro-
bustness of the state against finite perturbation in contrast to infinitesimal
perturbation. The sensitivity measure, which quantifies this robustness, can
be investigated by introducing perturbations at certain load levels and con-
sidering the perturbed motion. Some sensitivity studies are performed for
simple stability problems as well as for realistic structures (cylindrical shells)
under different loading conditions. Further scalar parameters based on Lia-
punov Characteristic Exponents are developed to allow a better judgment
of the motion after introducing perturbation and a more efficient analysis of
the complex response (see Ewert/Schweizerhof [7]).

Keywords structural stability · sensitivity · transient analysis · shell
structures

1 Introduction

Stability investigations with Finite Elements are currently performed assum-
ing a static behaviour for the pre- and post-buckling region. Most algorithms
follow a somehow standard procedure: a so-called linear eigenvalue analysis
is performed assuming a fully elastic buckling process. For this purpose the
tangent stiffness matrix is mostly separated in constant and linear or non-
linear terms; different formulations for the terms are possible (see Ramm
[13], Brendel [3], Helnwein [9]). Depending on the amount of the nonlinearity
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the predictions of the so-called stability points, bifurcation or snap-through
points, are more or less accurate. The more cumbersome alternative is the
computation of a full load-deflection path monitoring the determinant and
the eigenvalues of the tangent stiffness matrix. The accompanying eigenvalue
analysis have the advantage that the eigenmodes give e.g. further information
on possible measures to avoid buckling (see Brendel [3]). More sophisticated
techniques allow the direct computation of buckling loads (see Wriggers et
al. [22]). In the present contribution the nonlinear computation monitoring
some lower eigenvalues is used to determine singular points of shells, bifur-
cation or snap through points.
The post-buckling behavior resp. the post-buckling region of the nonlinear
load deflection path can be investigated neglecting dynamics with the well
known arc-length method and path-switching procedures. Other solution
techniques based an the asymptotic expansion allow a fairly efficient com-
putation of post-buckling branches (see Baguet et al. [1]). For rather simple
FE models with small numbers of degrees of freedom these procedures pro-
vide satisfactory results. However, for more complex structures such as shells
the computation of post-buckling paths assuming static behaviour becomes
rather difficult and questionable, in particular concerning the lowest post-
buckling load, which is used to judge safety against stability failure. This
is mostly due to badly conditioned matrices involved in the analysis then
and due to the fact that a sequence of bifurcation points occur mostly in
the post-buckling region and thus a sufficient analysis of this region appears
impossible even with the most sofisticated numerical instruments available
today.
Many limits of the static approach mentioned above are due to the fact that
buckling is in reality a dynamic process. Thus, many static states of equilib-
rium in the post-buckling region are not only difficult to compute but also
of no practical relevance. Thus, we suggest to model the complete loading
and deformation behaviour by a time-dependent process. The major advan-
tage of a purely transient analysis is the complete simulation of the buckling
process as it happens in reality. This is possible with a moderate numerical
effort, since the matrices used in the solution are usually better conditioned
compared to pure static analysis, e.g. applying a Newmark type algorithm
within the current contribution. This procedure is used to compute the post-
buckling loads of a cylinder under axial compression. For a cylinder under
external pressure resp. vacuum loading a post-buckling load is computed us-
ing an explicit time integration method considering the loading and different
unloading processes.
The transient analyses can also be used in the investigation of sensitivity –
not by varying the imperfections but by varying the initial conditions. The
idea of sensitivity investigations in a static sense known as the perturbation

energy method is proposed by Kröplin [11] and the following works of Tranel
[21] and Spohr [20]. This method is based on a purely static approach, in
which a perturbation vector is applied to structures at a defined load level.
The static perturbation vector has to be scaled, until the next unstable state
of equilibrium is obtained, which may be a problem.
In order to compute a sensitivity measure, in the present contribution, ki-
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netic perturbations are applied to structures at a given load level followed by
a transient analysis. The range and the shape of the perturbations is varied,
such that conclusions can be drawn for practical purposes and design rules.

2 Static vs. transient analysis

2.1 Static criteria

In nonlinear finite element analysis the system of equations

r(u) − λp = 0. (1)

must be solved to compute states of equilibrium Herein r denotes the vector
of internal forces, p the load vector and λ the load multiplier. For a Newton
type solution the linearization of (1) leads to

KT (ui)∆ui+1 = λp − r(ui) (2)

with the update of displacements

ui+1 = ui + ∆ui+1. (3)

Herein KT denotes the tangent stiffness matrix dependent on the current
displacement state and ∆ui+1 is the vector of the displacement increments
for the next iteration step. Within the incremental iterative solution process
involving an update of the displacement vector the iterations are performed
until a certain tolerance is met and convergence is achieved. The tangent
stiffness matrix KT , which is obtained by linearization, can be used in sta-
bility investigations of converged states of equilibrium.
It is well known, that for conservative systems which are considered here a
state of equilibrium is stable, if KT is positive definite, i.e. all eigenvalues µ
from the standard eigenvalue problem

(KT − µI)Ψ = 0 (4)

are greater than zero. Another commonly used stability criterion is based on
the determinant of KT . As the transition from stable to unstable equilibrium
states is characterized by zero eigenvalues µ = 0, the characteristic equation
of (4) gets

det(KT ) = 0. (5)

Using these criteria singular points can be determined in combination with
bisection procedures. Another tool to determine singular points is an ac-
companying eigenvalue analysis (see e.g. Brendel [3]). Herein, the tangential
matrix at a load level of λ0 with u0 is expanded into a series with the para-
meter Λ. For the investigated problems this parameter Λ represents then an
additional load multiplier. Truncating the expansion of KT after the linear
term the equation (5) leads to

det (KT ) = det(KT0|λ0
+ ΛKT1|λ0

) = 0 (6)

with the corresponding eigenvalue problem

(KT0|λ0
+ ΛKT1|λ0

)φ = 0. (7)
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KT0 represents the tangential stiffness matrix at the load level λ0 and KT1

represents the first derivative of KT with respect to λ. For the load level
below the critical level, a linear approximation for the critical load is obtained
as

λcr = λ0 + Λ. (8)

The procedure is known as linear buckling analysis, if the matrices KT0 and
KT1 are computed for the unloaded structure, i.e. at λ0 = 0. Solving the
equation (7) at varying load levels within a nonlinear computation, in which
the load is applied incrementally and equation (2) is solved in each load step,
we get a so-called accompanying buckling analysis.
A procedure directed towards the computation of the bifurcation points re-
sulting in an extended system of equations is given in Wriggers et al. [22].
There the condition of zero eigenvalues is introduced into (4) resulting in

KT Ψ = 0 (9)

and included as an additional constraint into the non-linear solution proce-
dure. Then, taking into account also a normalizing constraint, the singular
point can be estimated with rather high accuracy. If the singular point is a
bifurcation point, all branching paths may be of interest. In principle it is
possible to compute them, adding scaled eigenmodes ζΨ to the displacements
with small ζ, see Wagner at al. [23]. However, it is an open question, whether
this leads to any further information, as a purely static view does not take
into account the real physical behaviour.

2.2 Transient analysis

Performing a transient analysis step by step procedures are applied in the
context of nonlinear problems. Then the equation of motion (10) has to
be solved for each time step n + 1 (tn+1 = tn + ∆t). This can be done e.g.
according to a Newmark type scheme using an interpolation of displacements
(11) and velocities (12).

Mü + Cu̇ + r(u) − λp = 0 (10)

un+1 = un + ∆tu̇n + ∆t2
[(

1

2
− β

)

ün + βün+1

]

(11)

u̇n+1 = u̇n + ∆t [(1 − γ) ün + γün+1] (12)

In addition for the nonlinear case equation (10) must be linearized in a similar
way as equation (1) when combined with a Newton type scheme. With (11)
and (12) the linearization of (10) leads to the following equation

K̃∆ui+1

n+1 = λp −
(

r(ui
n+1) + Cu̇i

n+1 + Müi
n+1

)

. (13)

with the so-called generalized tangent matrix K̃

K̃ =
1

∆t2β
M +

γ

∆tβ
C + KT (ui

n+1). (14)

Equation (13) has to be solved in each time step n + 1 iteratively using the
displacement update (3) until convergence is achieved. Then we proceed to
the next time-step. Concerning stability no information can be gained from
the tangent matrix.
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2.3 Discussion

For structures with rather linear behaviour in the pre-buckling region singu-
lar points can be computed with rather good accuracy and little computa-
tional effort using the linearized eigenvalue problem (7) with an expansion
at λ0 = 0. The critical load is then given by λcr = Λ. Investigating struc-
tures with nonlinear pre-buckling behaviour a nonlinear analysis has to be
performed using e.g. the bisection procedure for the constraint (5). In this
case at the critical point itself Λ is identical to zero, i.e. the critical load is
λcr = λ0. For realistic structure with fine FE meshes a rather high numeri-
cal effort is needed for this investigation. The procedure with the extended
system of equations (Wriggers [22]) is then more efficient. However, the lat-
ter is less reliable for general structures, because convergence to the lowest
singular point is not ensured. For structures with many singular points, e.g.
imperfect cylinders under axial compression, this method suffers often from
convergence problems and often some singular points may be bypassed.
Even if in this static analysis the nonlinear load-deflection path can be com-
puted up to the first bifurcation resp. limit point and path switching is suc-
cessfully completed, considerable effort is necessary as further bifurcation
and limit points rather frequently occur on the post-buckling paths. Then
each path has to be followed to achieve a full overview over the possible
post-buckling equilibrium paths, where for practical purposes the focus is on
the post-buckling minimum. This becomes a rather unrealistic task for shell
structures with sufficiently fine meshes and many closely spaced bifurcation
points. Furthermore equilibrium paths may exist, which have no connection
to the primary path and which cannot be reached using static analyses.
For transient analyses no such simple stability criteria as in the static case
exist. In principle all possible perturbations in initial conditions have to be
considered, in order to investigate the stability of the obtained motion. Be-
yond that, the buckling behaviour of shells can be computed using transient
analyses avoiding the convergence problems occurring in static analyses, as
the condition number of K̃ is in general considerably smaller than the con-
dition number of KT , as a result of positive definite mass matrices M and
mostly rather small time steps ∆t in equation (14). Thus the transient be-
haviour of shell structures including the real physical buckling behaviour can
be easily computed. Several ways are suggested in the literature e.g. Riks,
Rankin and Brogan [14] proposal to compute the pre-buckling region in a
standard fashion using static analyses, followed then by a transient analy-
sis for the buckling and post-buckling process. Within such a procedure the
point in time of the initiation of the buckling process has to be determined,
which is fairly difficult. Thus, it has proven to be far more convenient to use a
transient analysis with standard time integration schemes even for the static
respectively quasi-static part of the process.

3 Sensitivity analysis – definition and procedure.

For systems with more than one state of equilibrium at a defined load level a
finite perturbation, e.g. by an initial velocity, can transfer the mechanical sys-
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tem out of the basin of attraction of the original stable state of equilibrium.
Then the structure can either move to another stable state of equilibrium or
perform an unbounded motion. In order to quantify the size of the pertur-
bation in combination with the applied static loading a sensitivity measure
is defined as the reciprocal value of the minimum perturbation energy, nec-
essary for this transfer. This energy is equal to the difference ∆Π of the
potential to the next unstable state of equilibrium according to a proposal
of Vielsack [24] (see Fig. 1).

S =
1

∆Π
=

1

Wp,min

(15)

From this definition it follows that a mechanical system is stable and insen-
sitive against any perturbation for S = 0, i.e. only one state of equilibrium
exists at this load level. If S > 0 the structure is sensitive and the sensitiv-
ity is increasing with e.g. a further reduction of the minimum perturbation
energy, i.e. several states of equilibrium exist at this load level. An unstable
system is obtained for S → ∞, e.g. at a so-called stability point.
To compute the defined sensitivity measure the procedure described in the
following is applied. First static nonlinear analysis usually under a given ex-
ternal loading λp is performed in order to reach the state of equilibrium to
be analyzed. For this purpose the linearized equation of equilibrium (2) is
solved iteratively to obtain finally the displacement vector u0 for a given load
level λ0.
In the next step a perturbation is introduced by setting a velocity pattern as
initial conditions u̇0. Then the perturbation energy can be computed as

Wp = Wkin =
1

2
u̇T

0 Mu̇0 (16)

with M as mass matrix. After introducing the perturbation the perturbed
motion must be computed with the initial conditions u0 and u̇0. Within
this step the previously applied loading λ0p is kept constant. The perturbed
motion is obtained solving the equation of motion (10) e.g. using a New-
mark type scheme, see section 2.2. The perturbed motion has now to be
checked, whether the initial basin of attraction is left or not. In the latter
case the structure vibrates around the investigated stable state of equilibrium
(λ0p, u0) see Fig. 2. Then a next analysis step follows with either increased
or decreased perturbation energy respectively. Following this procedure the
minimum perturbation energy, which is equal to the minimum kinetic energy,
can be determined iteratively with a defined accuracy. Then the sensitivity
can be computed via

S =
1

Wkin,min

. (17)

This value could be made dimensionless using e.g. the internal energy at the
investigated stable state of equilibrium. The main questions are:

– How to judge the perturbed motion efficiently and cast it into an algo-
rithm (”automatically”)?

– Which pattern of the perturbation vector u̇0 leads to the minimum per-
turbation energy?

These questions are discussed in the following.
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Fig. 2 Typical phase-portraits for the motions of the example in Fig. 1 for different
perturbation energies at a defined load level λ0p.

4 Judgment of the perturbed motion.

In the case of small perturbation energies, smaller than Wp,min, the structure
vibrates around the original state of equilibrium u0. In order to achieve a
distinct motion towards the attractor, see Fig.2, some damping has to be
incorporated into the system. This case represents then a ”stable situation” in
terms of the sensitivity investigations. For higher perturbation energies than
Wp,min the structure moves to another stable state of equilibrium or performs
an unbounded motion, which indicates a so-called ”unstable situation”. For
rational judgment of the perturbed motions an indicator is needed, that
allows an algorithmic and then automatic and efficient decision, whether a
critical perturbation energy is obtained. From the Liapunov Characteristic
Exponent an indicator can be derived, which allows such a decision.
The Liapunov Characteristic Exponent (LCE) allows to distinguish between
stable and unstable motions and is defined as

L = lim
t→∞

(L(t)) (18)
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with

L(t) = lim
δ0→0

(

1

t
ln

||δ(t)||
||δ0||

)

. (19)

L denotes the LCE, δ0 an initial perturbation and δ(t) the perturbation at
the time point t. || . . . || represents some norm of the perturbation vector. In
this case the perturbation vector is defined as the ”distance” between the
reference motion ar and some perturbed motion ap in phase space

||δ0|| = ||
(

ũ(t = 0), ˙̃u(t = 0)
)

|| (20)

and

||δ(t)|| = ||
(

ũ(t), ˙̃u(t)
)

|| (21)

with

ũ = ur − up and ˙̃u = u̇r − u̇p (22)

When ap converges asymptotically to ar the LCE L gets negative, see Fig. 3.
The LCE becomes zero, when δ remains constant, and it becomes positive,
when the trajectories diverge, e.g. in the case of chaotic motion.
The very important fact is, that L remains constant independent of the
chosen perturbation and of the chosen reference motion, if both motions
start in the “same region” (see Benettin et al. [2]). That means, that e.g.
for the case of asymptotic convergence the LCE remains constant for all
perturbed motions, which converge towards the defined reference motion,
independent of the value of initial perturbation δ0. Therefore in equation
(19) the limitation concerning δ0 → 0 can be neglected. Additionally taking
into account equations (20) and (21) we get

L(t) =
1

t
ln

||
(

ũ(t), ˙̃u(t)
)

||

||
(

ũ0, ˙̃u0

)

||
. (23)

As already mentioned, the main objective is to get an indicator, which sep-
arates the motion approaching the original stable state of equilibrium from
the other possible motions: a motion to a neighboring stable state of equi-
librium or an unbounded motion. All three motions are actually stable in
terms of the original definition of LCE, because infinitesimal perturbations
δ0 → 0 lead to bounded deviations from the investigated motion; the special
case of the motion on the separatrix can be neglected because of the included
damping, see Fig. 2. Taking into account the constraint of Benettin [2] for the
value of the perturbation vector δ0 we can state, that only the exponents for
the “stable situation” in terms of sensitivity analysis represent the Liapunov
Characteristic Exponents, as the motions in this case start in the “same re-
gion”. Despite the fact that the exponents for the “unstable situation” do
not represent the LCE in terms of its original definition, they are called LCE
in this contribution as well, because they can be considered as the LCE for
finite perturbations.
For the investigated problem of the motion of a structure after application
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of a kinetic perturbation including damping, the reference motion has to
“converge” to the original attractor, which is the investigated stable state
of equilibrium u0, see Fig. 2, at time t → ∞. This means, that in the com-
putation of the reference motion the kinetic perturbation has to be chosen
small enough. In the case that the perturbed motion “converges” to u0 as
well, a ”stable situation” is found and L becomes negative. In the ”unstable
situation” L becomes either zero, when the perturbed motion converges to
another stable state of equilibrium or L becomes positive, when the system
performs an unbounded motion. Therefore within the sensitivity analysis a
change of a situation from a “stable case” to an “unstable case” can be in-
dicated by the change of the value of the LCE from some negative number
either to zero or to some positive number.
For the computation of LCEs the Euclidean norm is often used, which is
defined for a vector vT = [v1, v2, . . . , vn] as

||v||
EUCL

=
√

vT v =

√

√

√

√

n
∑

i=1

v2
i . (24)

Applying this norm to displacements and velocities of the perturbation vector
ũ and ˙̃u we have to normalize the terms, in order to get a dimensionless form

||
(

ũ, ˙̃u
)

||
EUCL

=

√

√

√

√

Ndof
∑

i=1

(

u2
i

L2
+

u̇2
i

L2ω2

)

. (25)

Here ui represents the displacement for the “i”th degree of freedom and
Ndof represents the maximum number of degrees of freedom in the problem.
L represents some length and ω some eigenfrequency, which are character-
istic for the considered problem. As the characteristic length L occurs in
the denominator and in the numerator in equation (23), it disappears. Then
only the characteristic eigenfrequency ω has to be chosen properly. A proper
choice is rather difficult, because a high number of ω would underestimate
the influence of the velocities on the LCE, and a low number of ω would over-
estimate it. Therefore it is often preferred to neglect the velocities (see e.g.
Rugonyi/Bathe [17]). A further reason to neglect the velocities in the com-
putation of LCEs in sensitivity analyses is, that the different cases – “stable”
and “unstable situations” – are separated by the location of the attractors
in the pre- and post-buckling regions, but not by velocities. Therefore the
consideration of velocities is not significant in this analyses, moreover it may
be disturbing.
A further problem to be discussed, is the phase-shift caused by application
of a Newmark type scheme in solution of the equation of motion. The shift
depends on the time step size ∆t for the linear problem with constant matri-
ces, whereas for nonlinear problems with variable matrices this shift depends
not only on the time step size ∆t but also on initial conditions u0 and u̇0,
see Fig. 4. Therefore the phase shifts for the “reference” and the “perturbed
motions” are different, because of different kinetic perturbations leading to
different initial conditions. Despite the fact that in the case of a “stable situ-
ation” both motions are directed towards the same attractor, the LCE would
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get positive indicating an “unstable situation” if it is computed in each time
step. This is due to the fact, that the motions converge in the amplitude,
but diverge in phase. This situation can be considered as an orbital stability,
but an instability according to Liapunov. To obtain the LCE correct for the
problems discussed here equation (23) must be modified in a fashion, that the
values are computed at certain characteristic points in time. An appropriate
choice are the maximum values of the amplitude, e.g. the maximum values
of the displacements.
Two different norms are proposed to compute the Liapunov Characteristic
Exponent. In order to keep computing cost low, a simple norm of a selected
single degree of freedom (SDOF) û is used first, where only the perturbation
for that DOF is considered. In this case equation (24) can be wrote as

||ũ||
EUCL

=
√

ũ2 = |ũ| = |ûr − ûp|. (26)

As shown before, L has to be computed using the displacements at certain
characteristic time points

L
SDOF

(t∗) =
1

t∗
ln

|ûr(t
∗) − ûp(t

∗∗)|
|ûr,0 − ûp,0|

. (27)

with

˙̂ur(t
∗) = ˙̂up(t

∗∗) = 0. (28)

As the initial perturbation is applied by the definition of initial velocities, the
denominator can not be computed at time point t = 0, but must be computed
for t ≈ 0 using the first maximum number of displacement û obtained for the
reference motion. The advantage is, that this form excludes the velocities by
the selection of the states to compute the distance ũ.
In general it is rather difficult to find a characteristic degree of freedom
describing the motion characteristics for arbitrary loading. A more general
form can be gained using the Euclidean norm of the complete perturbation
vector instead of single degrees of freedom. Using equations (23) and (24)

and neglecting the term with perturbation velocities ˙̃u again we get

L
EUCL

(t) =
1

t
ln

√

ũT (t)ũ(t)
√

ũT
0 ũ0

. (29)

This formulation requires to store the complete displacement vector of the
two considered motions at each computed time step, that may become a
problem for large FE models. Further the situations “stable” and “unstable”
can be separated neglecting the direction of the displacement vectors, as the
locations of the attractors are described sufficiently by its length. Therefore
a simplified formulation is proposed, where the norms of the displacement
vectors are used instead of the norm of the perturbation vector

L
EUCL

(t∗) =
1

t∗
ln

∣

∣

∣

√

uT
r ur

∣

∣

t∗
−

√

uT
p up

∣

∣

t∗∗

∣

∣

∣

∣

∣

∣

√

uT
r,0ur,0 −

√

uT
p,0up,0

∣

∣

∣

. (30)
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Fig. 3 Trajectories of reference and perturbed motions in phase space for the three
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The values at time points t∗ and t∗∗ denote the maximum values of the
norms, thus the norms of the velocities are

|| ˙̃ur(t
∗)|| ≈ || ˙̃up(t

∗∗)|| ≈ 0. (31)

This provides some legitimation to neglect the velocities in the norm.
Based on equation (18) both measures should finally converge

L = lim
t∗→∞

L
SDOF

(t∗) = lim
t∗→∞

L
EUCL

(t∗). (32)

Thus, L should be computed for t → ∞ resp. for a very long time. However,
numerical tests have shown, that it is sufficient to obtain convergence for the
LCE with increasing time. Thus, the computation can be terminated, when
the LCE has converged after a sufficiently long time span.

5 Simple examples with beam structures.

First two simple examples with beam structures – a clamped beam and a
simply supported beam with elastic support – are investigated to demonstrate
the sensitivity analysis procedure.

5.1 Clamped imperfect beam.

The first structure is an imperfect beam as shown in Fig. 5. It is clamped at
the lower end and loaded with a vertical force F = 1 kN at the upper end.
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λ represents the load multiplier. The imperfection is modeled as an angular
deviation of the beam from the vertical line resp. linear horizontal distortion
given by e. For the discretization 5 bilinear shell elements are used.
The load-deflection curve is shown in Fig. 6. As a characteristic coordinate
the deflection w is chosen. Stable solution branches are plotted with a solid
line, unstable solution branches with a dotted line. For the perfect system,
i.e. e = 0, a symmetric stable bifurcation problem is obtained, for the imper-
fect system two independent solution branches exist. Using standard path
following solution procedures, only the stable primary solution path can be
obtained. However, given a finite perturbation at a certain load level above
the bifurcation point the motion may be to the secondary solution path, if
the perturbation is not to small. For small perturbations – as the equilibrium
is stable – only a motion in the vicinity of the equilibrium state is obtained.
In the following, a stable equilibrium state at the load level λ0 = 0.0465
is computed first solving the corresponding non-linear equations (1). After-
wards perturbations are introduced into the system as initial velocities u̇0,
distributed affine to the first vibration eigenmode Φ1,0 from equation (33)
solved for the unloaded structure. Thus the perturbations are measured by
the corresponding kinetic energy according to equation (16). For this simple
example, it is obvious, that this is the critical mode.
(

KT − ω2M
)

Φ = 0 (33)

In Fig. 7 the phase-portrait of the coordinate w is given for the perturbation
energy Wkin = 3.48 Nmm. Some numerical damping is introduced into the
system with the Newmark parameters β = 0.49 and γ = 0.9. The two stable
states of equilibrium, which are the attractors at this load level, are marked
in Fig. 7 with bullets, the unstable state with a circle. Starting at the original
attractor – stable state of equilibrium at w = 18 mm – with the perturbation
energy Wkin = 3.48 Nmm the second stable state of equilibrium is just
reached. For smaller energies, a vibration in the vicinity of the first state of
equilibrium is obtained; for larger energies either the second or again the first
state of equilibrium will be reached. In this example we have the first case
mentioned in section 3: the minimum perturbation energy initiates a motion
away from the stable state of equilibrium on the natural load deflection path
towards another stable state of equilibrium. The sensitivity at the considered
load level λ0 = 0.0465 can then be computed using equation (17) as

S =
1

Wkin,min

=
1

3.48 Nmm
= 0.287 (Nmm)−1. (34)

5.2 Imperfect beam with elastic support.

The behaviour of the beam with identical geometry as discussed in previous
section changes from a symmetric stable to a symmetric unstable behaviour,
if it is hinged on the lower side and supported elastically on the upper side, see
Fig. 8. Within the finite element model the elastic foundation is realized by an
additional shell element with Young’s modulus Esup. Again, the displacement
w is shown in the load-deflection curve in Fig. 9. The main difference to the
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clamped beam discussed in previous section is, that now no other stable
state of equilibrium exists besides the stable natural equilibrium path (solid
line in Fig. 9). Therefore, we have the other case mentioned in section 3:
the minimum perturbation energy initiates an unbounded motion, once the
structure leaves the basin of attraction of the stable state of equilibrium.
This situation is depicted in Fig. 10, where the kinetic energy Wkin = 8.9 Nm
and Wkin = 15.4 Nm is introduced into the system with initial velocities u̇0

distributed affine to the first vibration eigenmode. The solid line (a) in Fig.
10 for the energy of Wkin = 8.9 Nm shows a motion towards the stable state
of equilibrium. For a larger energy Wkin = 15.4 Nm, the dotted line (b)
bypasses the unstable state of equilibrium at w = 58.5 mm leading to an
unbounded motion. Thus, the energy of Wkin = 15.4 Nm can be taken as
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Fig. 8 Geometry and material data of the imperfect beam with elastic support.

a measure for the sensitivity. Then, the sensitivity for the imperfect beam
with elastic support at the load level of λ0 = 7 can be given as

S =
1

Wkin,min

=
1

15.4
= 0.065 (Nm)−1. (35)

6 Circular arch

The circular arch shown in Fig. 11 is chosen to demonstrate the applica-
tion of the Liapunov Characteristic Exponents. The properties are: E =
0.1373 MN/mm2, ν = 0.0, R = 10 m, t = 0.3 m, θ = 90o, F = 25 MN ,
λ is the load multiplier. The arch is discretized with 18 4-node bilinear de-
generated shell elements. A static analysis using the arc-length method leads



15

0

2

4

6

8

10

12

-100 -75 -50 -25 0 25 50 75 100

lo
ad

 fa
ct

or
 λ

displacement w [mm]

7

3.8-63.6 58.5

Fig. 9 Imperfect beam with elastic support – load-displacement curves and states
of equilibrium at λ0 = 7.

-100

-50

0

50

100

-100 -75 -50 -25 0 25 50 75 100

ve
lo

ci
ty

 [m
/s

]

displacement w [mm]

Wkin = 8.9 Nm
Wkin = 15.4 Nm

Fig. 10 Imperfect beam with elastic support – phase-portrait at λ0 = 7

to the load deflection curve shown in Fig. 12, where the solid lines denote
the stable and the dotted line the unstable equilibrium paths. The unsta-
ble paths correspond to the asymmetric shape of the arch, which will be
reached by bifurcation, and the symmetric snap-through problem, which is
out of interest for general practical situations with arbitrary small imper-
fections. In the following the sensitivity of the stable equilibrium state at
the load level λ0 = 1.5 is investigated. At this load level the structure may
either reach one of the two stable states of equilibrium or one of the unstable
states depicted in Fig. 12. After computing the first equilibrium state on the
load curve at load level λ0 = 1.5, the perturbation is introduced by defin-
ing the initial velocities distributed affine to the first vibration eigenmode
of the unloaded structure. A reference motion is obtained for a very small
perturbation energy of Wkin,ref = 0.275 MNm; then perturbed motions for
different perturbation energies of Wkin,per = 2.75/16.5/22.0/27.5 MNm are
investigated. The LCEs are computed using equations (27) resp. (30). For the
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Fig. 11 Circular arch, geometry and loading.

computation of L
SDOF

the vertical displacement u at point 1 is used (Fig.
11). It must be noted, that a variation of the chosen dof may lead to slightly
different results (see Ewert/Schweizerhof [7]). In the cases of Wkin,per = 2.75
and 16.5 MNm the structure converges to the original state of equilibrium
in the pre-buckling region. As expected, both exponents, computed via the
single DOF LSDOF and via the Euclidean norm L

EUCL
, converge to the same

negative value indicating a ”stable situation” (see Fig. 13 and 14), whereas
the value of LCEs for the higher perturbation energies of Wkin,per = 22.0
and 27.5 MNm converge to zero indicating an ”unstable situation” and a
motion towards the second stable state of equilibrium in the post-buckling
region. Comparing the evolution of L

SDOF
and L

EUCL
in time it is evident,

that the convergence behavior is slightly different. The more general form via
the Euclidean norm shows a ”faster” convergence with far less oscillations
and allows to judge the ”stable” or ”unstable situation” rather early in the
analysis. This has been also confirmed by other numerical studies. Neverthe-
less, both formulations lead to the correct indication of the perturbed motion
and can be used for this example.

7 Cylinder under axial compression

For cylindrical shell under axial compression the buckling load and the min-
imum post-buckling load if existent in the particular problem represent an
upper resp. lower bound for the range of sensitive equilibrium states. It is ob-
vious that at a stability point the sensitivity becomes S = 0, i.e. the structure
buckles for infinite small perturbations. Below the post-buckling minimum
load S → ∞, i.e. the structures doesn’t buckle for arbitrarily large pertur-
bations. It seems to be reasonable to try to compute these ”bounds” before
performing the sensitivity investigations.
A further reason to investigate the singular points is the fact, that in en-
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gineering practice buckling loads in combination with knock-down factors
based on experiments are used in design rules. An alternative procedure pro-
posed in design rules is based on the computation of the limit load taking
into account the modification of the bifurcation load resp. the snap-through
load due to geometrical imperfections. These imperfections are mostly chosen
affine to the first eigenmode at the singular points. In the following first the
influence of meshing including adaptive mesh refinement on the computation
of stability points is investigated using low order shell elements. Afterwards
a transient analysis of a cylinder under axial loading is performed, in order
to obtain the complete load-deflection path with the focus on the minimum
post-buckling load. Then the applicability of the two proposed versions of
LCE is investigated. Finally some sensitivity investigations at various load
levels are performed.

7.1 Computation of stability points using static analysis

To compute the so-called stability points criterion (5) is used in combination
with the bisection procedure to take into account the geometrical nonlinear
behaviour in the pre-buckling region. First of all mesh convergence studies
are performed for a quarter of a perfect cylinder under axial compression
using uniform mesh refinement (Fig. 15). As boundary conditions the upper
and lower edges are hinged allowing displacements in axial direction. At both
edges a defined load is applied in axial direction. In this case the analytical
solution can be written as (see Yamaki [25])

α =
Fcr

Fcr,cl

= 0.843 (36)

with the normalized critical load α for the given boundary conditions and
the critical load Fcr. The so-called classical critical load is given by

Fcr,cl =
2πEt2

√

3(1 − ν2)
. (37)

Two different shell elements are used in the FE model: a bilinear shell ele-
ment with ANS for the transversal shear strains according to Dvorkin/Bathe
[5] and a biquadratic shell element MITC9 according to Bucalem/Bathe [4].
For the implementation as nonlinear shell elements we refer to Hauptmann
[8]. The results of 4 refinement steps are given in Fig. 16. The convergence
diagram for the normalized buckling load α shows a much faster convergence
for the biquadratic element than for bilinear elements. Even for a very fine
mesh with 120x120 elements and 72240 degrees of freedom (Ndof) the devia-
tion of the buckling load computed with bilinear elements from the analytical
solution is still about 3% in this simple example. The reason for this is the
much smoother approximation of the curved geometry using biquadratic el-
ements. Though different eigenvectors are achieved for the starting meshes,
both models converge to the same final buckling mode, see Fig. 17 and Fig.
18.
An adaptive h-refinement procedure might improve the convergence behav-
iour of a FE solution. In the present contribution a procedure partially based
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on the well-known a-posteriori error estimator of Zienkiewicz/Zhu [26] is
used. The exact error distribution ||e|| is defined by

||e||2 =

∫

Ω0

(σ − σh) : (ǫ − ǫh)dΩ (38)

with exact values of stresses σ resp. strains ǫ. The stresses σh resp. strains
ǫh are the discrete values the FE solution. As the exact values are unknown
the expression (38) is approximated by

||eh||2 =

∫

Ω0

(σ∗ − σh) : (ǫ∗ − ǫh)dΩ. (39)

The values denoted with “*” are called recovered values and are computed
by a least-square fit on element patches using the so-called superconvergent
patch recovery procedure (see Zienkiewicz/Zhu [26]). Using the recovered and
the discrete values the error distribution can be computed and used for mesh
refinement. Neumann/Schweizerhof [12] proposed to compute the discrete
values using the lowest eigenvector to improve the investigations of vibration
eigenmodes. In a similar fashion the values resp. the error distribution are
computed here using simply the lowest eigenvector of (4) at the singular point
instead of the displacement vector.
The following procedure is followed in an adaptive computation of singular
points and buckling modes:

a) starting with a coarse mesh, e.g. 20x20 Elements
b) bisection to the singular point within a nonlinear computation monitoring

the lowest eigenvalues of (4)
c) computation of eigenvalues and eigenmodes at the singular point, e.g.

using (4)
d) computation of error distribution using the lowest eigenmode as described

before
f) restart with the refined mesh with step b)

The results of an adaptive analysis using bilinear elements show, that the con-
vergence behaviour concerning the singular point could be improved, see Fig.
19. In contrast to that the achieved buckling modes do not converge to the
target mode of the uniform refined mesh, see Fig. 20. This is due to the tran-
sition elements, which appear in adaptive meshes. Such transition elements
are mostly considerably distorted for curved shells compared to standard el-
ement form. Therefore they often cause artificial geometrical imperfections
leading to buckling modes, which are partially totally different from the cor-
rect modes. Modeling the cylinder with biquadratic elements these imper-
fections introduced by imperfect geometry approximation are small enough
and do not influence the computation of eigenmodes at the singular points
distinctly, see Fig. 21.

7.2 Simulation of buckling behaviour as a transient process.

The advantages and disadvantages of static and transient analyses in stability
investigations have been already discussed in Section 2. Due to the advan-
tage of transient analyses the buckling behaviour of real imperfect cylinder
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Ndof = 2040 Ndof = 72240

Fig. 18 First eigenvectors at singular points for coarse and fine meshes; uniform
refinement using biquadratic elements.
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Ndof = 52442

Fig. 21 First eigenvectors at singular points for refinement steps q1, q2 and q3

indicated in Fig.19; adaptive refinement using biquadratic elements.

is investigated solving the equation of motion with the Newmark method.
In Fig. 22 the finite element model with scaled imperfections of the inves-
tigated cylindrical shell, named AL1100, are given. The imperfection shape
originates from the fabrication process and was measured at the University of
Karlsruhe within the framework of a long term cooperative project, involving
a series of experiments, see Knebel et al. [10]. The geometry and the material
data are: E = 2.0 · 105 N/mm2, ν = 0.3, height H = 966 mm, mean radius
R = 625 mm and mean thickness t = 0.56 mm. As boundary conditions it
is assumed, that the cylinder is hinged at both edges. At the bottom edge
all displacements are constrained. At the top edge displacements in axial
direction are allowed. Within the FE model the loading applied by a load-
ing plate is represented by linking the axial displacements together. Then a
so-called displacement controlled loading can be applied at the upper edge
resulting in an axial loading. For the transient analysis the displacements
are prescribed rather closely to the real experiments with a velocity of 0.01
mm/s, i.e. very slow. The load-deflection behavior for the displacement of
the top edge is given in Fig. 23. As expected, the buckling load of 165 kN is
very close to the buckling load obtained from static analysis, because of the
rather low loading velocity. The kinetic energy shown in the close-up view in
Fig. 23 is increasing from nearly zero to approximately 3 Nm indicating the
dynamic nature of the very fast buckling process. After the buckling process
the post-buckling load remains nearly constant at a level of about 50 kN .
This post-buckling load is very close to the load obtained in the experiment
with 48 kN and also close to the value of 47.8 kN from the German design
rule DIN 18800 part 4 [6]. The latter design value is computed without the
reduction factor for non-elastic material behaviour. For a more detailed in-
formation about the study with transient analyses we refer to Rottner et al.
[15] and [16].
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Fig. 22 System and measured geometry for axially loaded cylinder AL 1100, see
Knebel et al. [10]; imperfections are scaled by a factor of 50.
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7.3 Judgment of the perturbed motion.

As the cylinder shows a post-buckling load considerably below the buckling
load a distinct sensitivity against perturbations can be expected in load re-
gions between these two load levels. Due to this fact the applicability of the
proposed exponents L

SDOF
and L

EUCL
in the sensitivity analysis of a cylin-

der is investigated at a load level of F = 100 kN . At this load level the load
deformation curve in Fig. 23 indicates, that there is at least an unstable equi-
librium state besides the stable pre-buckling state. A stable equilibrium state
in the post-buckling region at this load level could not be computed, as only
rather small axial displacements were considered and a stable state would
involve very large deformations of the cylinder after the buckling process.
In this investigation the shape of the perturbation vector is chosen affine
to the first vibration eigenmode of the unloaded structure. Other shapes are
discussed in the next subsection. The reference motion is obtained for a small
perturbation energy of Wkin,ref = 0.1 Nm; the perturbed motions are com-
puted for different perturbation energies of Wkin,per = 0.2/1.0/1.3/1.4 Nm.
The displacement of the upper edge of the cylinder is chosen as characteris-
tic dof for the LCE measures. In the final analysis with Wkin,per = 1.4 Nm
the structure leaves the basin of attraction of the original equilibrium state
after two periods and performs an unbounded motion without any further
oscillations. In this particular case it was impossible to compute a sufficient
number of values of the LCEs to obtain an final evolution in time to confirm
the ”unstable situation”. However, the evolution of LCE obtained in the time
interval is a clear indication, that an unbounded motion is almost guaran-
teed. The other considered perturbations with smaller quantities of Wkin,per

lead to a ”stable situation”. As also depicted in Fig. 24 and Fig. 25 the LCE
results for the axially loaded cylinder can not be as easily interpreted as for
the circular arch. The evolutions of L

SDOF
and L

EUCL
in time differ con-

siderably; in the case of L
SDOF

it is hardly possible to identify convergence
for higher perturbation energies such as 1.0 Nm and 1.3 Nm. However, the
more general form via the Euclidean norm converges, but rather slowly. As
a consequence a very high numerical effort is needed for this confirmation.

7.4 Sensitivity analysis - variation of the perturbation vector.

As already mentioned, different perturbation shapes, i.e. shapes of the ve-
locity distribution u̇0, lead to different perturbed motions, see also [15] and
[16]. An open question is, which of these shapes leads to the absolute mini-
mum perturbation energy respectively to the maximum sensitivity? In order
to answer this question for the cylinder described previously, the sensitiv-
ity is investigated at various load levels above the minimum post-buckling
load of 50 kN . Four different shapes of the perturbation vector u̇0 are con-
sidered. All shapes play an important role concerning the stability behavior
of cylindrical shells. It is well-known that we need the least energy to ini-
tiate a vibration, if the perturbation vector is similar to the first vibration
eigenmode, i.e solutions of equation (33). Therefore the first two shapes of
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the perturbation vector Φ1,load and Φ1,0 are first vibration eigenmodes com-
puted for the structure at the current load level respectively for the unloaded
structure. The latter chosen as pre-loading may often have little effect on the
shape. As these shapes are visually almost identical for the cylinder, only
one of them is depicted in Fig. 26. The third investigated shape Φ1,S is the
buckling eigenmode computed at the first singular point of the tangent ma-
trix. The fourth investigated shape Φbuck is similar to the final post-buckling
shape obtained in transient analysis.
In Fig. 27 found from analyses at different load levels it becomes obvious
that different perturbation shapes lead to different maximum sensitivities.
At lower load levels the maximum sensitivity is obtained for Φbuck. At higher
load levels up to 100 kN Φ1,load resp. Φ1,0 lead to the maximum sensitiv-
ity values. It must be noted, that up to this load level investigations with
the vibration eigenmode Φ1,0 computed for the unloaded structure provide
a rather good approximation for the analysis with Φ1,load. At load levels
above 100 kN , which are closer to the buckling load of 165 kN , the sensitiv-
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Fig. 26 Axially loaded cylinder, shapes of perturbation vector for velocity distri-
bution.
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Fig. 27 Sensitivity investigations for cylinder AL 1100 under axial loading and
cut-out between 0.0 and 1.0; variations of perturbation shape.

ity against Φ1,S is much higher than against the other investigated shapes.
Below the load level of 50 kN , which is the minimum post-buckling load, no
sensitivity was found, even for perturbation energies much larger than the
internal energy at the buckling point. The close-up in Fig. 27 shows that
up to 60 kN almost no difference in the sensitivity is visible and that up to
70 kN the sensitivity is rather small.
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8 Cylinder under external pressure loading

8.1 Buckling behaviour

Compared to the cylinder under axial loading, where the loading can be either
modeled by a force or by a displacement driven control, pressure loading on a
cylinder cannot be modeled by prescribed displacements, because the load is
applied to the total surface of the cylinder. The only possibility to determine
a minimum post-buckling load for the pressure load is by variation of the
history of the loading process. For this reason a loading-holding-unloading
process providing an internal vacuum loading was chosen modeled by a closed
cylinder and an associated piston. The piston can be moved creating vacuum
with a controlled volume, see Fig. 28. The geometry and material data of the
cylinder are identical to the cylinder under axial loading described previously.
All displacements of the lower edge are constrained, whereas at the top edge
only the vertical displacements are admitted.
As the loading process in the simulation is rather fast with vP = 1.0 m/s
the cylinder starts to buckle in the loading phase at a fairly high value of
approximately 0.005 N/mm2, the so-called dynamic buckling load, compared
to the static buckling load, see Fig. 30. Then in the holding phase the value
for the vacuum is decreasing, due to the volume reduction of the cylinder, as
a result of the buckling process. Herein the volume reduction dV is defined
as

dV =
Vcyl,0 − Vcyl,1

Vcyl,0

· 100%. (40)

The buckling pattern is strongly changing showing mode jumping within the
holding process. However, the reduction of vacuum thus the volume change
in the holding phase is rather small compared to the post-buckling load
observed for the axially loaded cylinder. In the unloading phase a completely
different equilibrium path compared to the loading process is followed for
both unloading velocities shown. Finally the cylinder ”snaps” back into the
undeformed configuration at a load level of approx. 0.0023 N/mm2, which is
significantly lower than both the static and the dynamic buckling load. This
load value could be considered as the minimum post-buckling load for the
pressure loading modeled by vacuum and it is close to the value found in the
German design rule [6]. We also have to point out, that the load-deformation
path is also varying with varying unloading velocities. As expected, in cases of
lower velocities the minimum post-buckling load is closer to the value found
in the German design rule, see Fig. 30 .

8.2 Sensitivity analysis for the cylinder under external pressure.

The sensitivity studies for the cylinder under external pressure have been
performed in a similar fashion as for the axially loaded cylinder. First a static
analysis is performed up to the considered load level. After this a transient
analysis follows with an applied perturbation using the vibration eigenmode
Φ1,0. As the pressure loading has to remain constant for this investigation
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Fig. 28 Cylinder under vacuum loading, loading by piston motion; initial state
and situation after buckling.
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Fig. 29 Vacuum vs. time for cylinder under vacuum loading with two different
unloading velocities.
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Fig. 31 Sensitivity diagram for cylinder AL 1100 under external pressure.

not a vacuum loading, but an external pressure loading is modeled here. As
expected, no sensitivity is found below the load level of 0.0025 N/mm2 which
is close to the post-buckling load level obtained in the previous section, see
Fig. 31. In the vicinity of the static buckling load of 0.00357 N/mm2 the
sensitivity becomes rather large, similar as for axial loading.

9 Aspects for the stability design of shells.

Sensitivity can be used for design purposes by checking the real quantity of
the necessary perturbation energy and judging the vulnerability of the design.
The sensitivity studies may even lead to an increase of the design load level
compared to current rather conservative design rules for load regions with
very low sensitivity.
In Fig. 32 the sensitivity values are shown for the cases of axial and external
pressure loading. The load is normalized with respect to the static buckling
load of 165 kN for the axial loading and 0.00357 N/mm2 for the external
pressure loading. Comparing both curves we can conclude, that for the case of
axial loading the sensitive region is much larger than for the case of external
pressure. However, the sensitivity values are rather low at lower load levels
for the axial loading. Therefore it seems to be reasonable to propose an
increase of the design load level for the axial loading case, e.g. up to 0.5 of
the static buckling load. For the external pressure the sensitivity is quickly
increasing beyond a load level of 0.7. Thus, for external pressure an increase
of the design pressure value beyond the completely insensitive region cannot
be suggested. The application of some sensitivity studies may assist in the
modernization of current overly conservative design rules.

10 Conclusions

The investigations on the buckling of cylindrical shells taking transient analy-
sis into account show that a better judgment of the stability of a current
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Fig. 32 Sensitivity for the cylinder AL 1100 for axial and external pressure loading.
Load normalized to static buckling load obtained by eigenvalue analysis.

pre-buckling situation is possible than with any static analysis. In the case of
vacuum loading the post-buckling studies had to be performed by consider-
ing a loading-holding-unloading process. The sensitivity studies allow a good
judgment of the current stable equilibrium state in the pre-buckling region
concerning the ”practical” stability of these states for both considered load
cases. In particular, valuable information can be gained for practical design
purposes.
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21. G. Tranel (1994) Stabilitätsnachweis beliebiger Schalen mit dem Konzept der
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