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Abstract

The operations necessary for the computation of the intewwdal force vector are in
general the most time-consuming parts of an explicit FHyas The paper presents an
implementation concept for element routines for voluncestiell — the so-called Solid-
Shell — elements based on the application of the symboligraroming tool ACEGEN, a
plug-in for the computer algebra softwareAMHEMATICA . This symbolic implementation
means that vector and matrix operations and differentiatido not have to be computed
in advance in order to realize a conversion into a programgrtdanguage. Consequently,
programming errors can be avoided almost completely argdtie® is required for the
implementation. Program code irORTRAN is generated and simultaneously optimized
automatically, which leads to very efficient routines coneplato manually implemented
code.

1 Introduction

In order to realize a continuum-like modeling of a shell stane and being able to to capture
3D effects as in laminated shells, the so-called Solid{Sklement class, presented e.g. in
[18, [11], with linear interpolation of geometry and dismagents in thickness as well as in
shell surface direction is a suitable alternative to puB&yanalysis. As the formulation allows
independent interpolation for the in-plane and the ouplafie direction, a separate higher order
interpolation only in the shell-surface plane as often eeddr arbitrary curved shell geometries
is possible.

The most widely-used explicit time integration method ie ttentral difference scheme,
often also called ¥RLET algorithm [24]. For lumped mass matrices the costly sotutid
coupled linear equations on global level is not necessamthér the usage of diagonalized
mass matrices solely requires vector operations, whiaslealow computational cost per time
step. Unfortunately, due to the so-called @RANT criterion [§], the time step size is limited to a
critical value, which makes the central difference methadtty attractive for ‘highly dynamic’
problems like impact, strong nonlinearities and short tlonatransient analyses, where small
time steps are required anyway.

In this contribution the focus is on an implementation cqtder Solid-Shell elements us-
ing linear/ quadratic interpolation of geometry and displaents in in-plane direction together
with a linear interpolation in thickness direction. Besidbe pure displacement formulation
with standard (full) numerical integration, which — as islWown — leads to an overly stiff
behavior, the implementation of different approaches @eoto reduce these so-called locking
phenomena are discussed. Regarding geometric lockingggftae method ofAssumed Nat-
ural Strains(ANS) [2] 6),/4,/5], where the strains are evaluated at spesdmpling points and



interpolated with the desired order is applieci®soNlocking, which affects simulations near
the incompressible limit is cured with different versiong( different numbers of parameters)
of the ‘Enhanced Assumed StrafieAS) method [23, 22].

The implementation concept is based on the applicationegymbolic programming tool
ACEGEN, qg.v. [15,13], which allows a combination of symbolic ogeyas together with the
automatic generation of highly efficient program code. BANS and EAS schemes are also
implemented applying symbolic programming. The generatdatoutines are implemented
into the in-house finite element code FEAP-MeKal [21]. Thecgms of the implementation
concept are discussed and the efficiency and functiondlifysoelement formulations are pre-
sented on numerical examples.

2 Explicit Timelntegration

For numerical time integration, the well-known centraffeliénce method is used and imple-
mented as proposed e. g./in [3] or originally for moleculanayics in[24]. Here the governing
equations are shown briefly.

For the current time step, the accelerations are computed as

dr = M <f” e d"*/?) , L)

with the diagonalized system mass mafkik the system load vectdf at timen, the system
damping matrixC and the velocities”~ /> at time step: — !/2. The velocity between two time
steps is updated by

A"t =dv Y 4 A d” @)

with Apr = LA Lwhich leads to the displacements

d"t = d" + A dT, (3)

with the current time step siz&t™ = t"*! —¢". The time step size is limited by thedDRANT-

criterion by
2 le
~ o (min —) , 4)
Wmazx e Ce

wherew,,.. is the largest eigenfrequendéyyepresents a characteristic element lengthcaride
wave propagation velocity. ThedRANT-criterion is based on linear problems, so in order to
consider non-linearities, the factar< 1 is introduced. For moderately non-linear application,
usuallya = 0.9 is sufficient, for applications as e. g. high-speed impacbl@ms,c may have

to be0.9 or even less.

The implementation of the central difference method leads $ystem of uncoupled linear
equations and only vector operations are performed on plebal if diagonal mass matrices
are used. This leads to very little CPU-time requirementgipee step, compared to implicit
methods. The limitation of the time step by Equatioh (4) nsatkés method especially appro-
priate for highly dynamic applications such as crash or ichad for problems with strong
non-linearities. For long-term dynamic problems, a vergéanumber of time steps is required,
which may lead to a long simulation time, however it is a puteghe marching scheme. Effi-
ciency depends mainly on the evaluation of the internalgeyrthe main topic of the following
sections.
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Figure 1. geometry of a solid shell

3 The Solid-Shell Concept

In this section, a very short introduction into the Solideslboncept is given. For more detailed
information, it is referred to the comprehensive literatwe.g. [18, 11, 17]. More recent devel-
opments regarding especially the treatment of artificiffhsiss effects by reduced integration
techniques are given e. g. in [1,/19/ 7] 20] in the context qdliait finite element applications.

3.1 Kinematics

The Solid-Shell concept provides a shell formulation withpthcement degrees of freedom
only. Under the assumption of the degenerated shell coticaithe normals to the mid-surface
remain straight, following the notation given in Figlte e tinitial geometry is given by

X(€.0.0) = 5 (1 + O Xul&om) + (1 - O Xi(Em). ©

Linear interpolation of the displacements of the upper &edawer surface leads to

W€ Q) = 5 (14 Qualen) + (- O ulen). ©

In this contribution, linear and quadratic, isoparame®atid-Shell elements are used with bi-
linear/ bi-quadratic interpolation in membrane and linederpolation in thickness direction.
For the discretization of the initial geometry, this leads t
nip 1
X = ~N; () X; 7
(&) ;(2 (&) ©(C) ) Y

wherenip is the number of in-plane nodes. The upper and lower nodatitmts are described
by the vectoiX;, = [ Xiuw X }T, the interpolation is performed linearly in thickness dtren
with the interpolation matriX(¢). The in-plane interpolation is achieved in the present case
with linear (nip = 4) or quadratic ¢ip = 9) Lagrangian shape functions. According to the
isoparametric concept, the displacements are interpblaité the same shape functions. The
application of higher order Lagrangian or Serendipity tghapes is also possible, quadratic
Serendipity functions e. g. lead to a formulation withelement nodesjp = 8).
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3.2 Residual Force Vector

The system force vector in Equatidd (1) is composed of théallp defined external nodal
forcesf*** and the internal nodal forc€$' which are computed on element level. The internal
forces can be written as the derivative of the internal gné&rg’ with respect to the vector
of nodal degrees of freedoch The implemented element formulations are formulated with
different hyper-elastic material models as eNgo-Hookematerial law, defined by the strain
energy function

W(C) = g (Ic —3)—pInJ+ % (InJ)* with J? =1ll¢, (8)

with the first and third invariani: andIIl¢ of theright Cauchy-Green deformation tensdhe
internal energy and hence the internal nodal force vectiteis obtained by

I = / W(C)dv , =1y = a% / W(C)dv . 9)
|4 |4

3.3 MassMatrices

As mentioned in Sectionl 2, an efficient usage of the centfdrdnce method implies diago-
nalized mass matrices. The entries of the consistent elamass matrixVI¢

M = / pN -NTqv (10)
\%

with the shape functions assembled in the mawiare therefore e. g. summed up row by row,
in order to achieve the diagonalized form

M =
pebd — ) 2 M 1= (11)

? 0 i
For element formulations using the Lagrangian shape fanstithis method leads to identical or
very similar mass matrices as other methods as e. g. dedanifi2] such asnodal integratioh
or ‘scaled diagonalsvhich are also implemented in our code. When using Serétydiype
shape functions, theow-suni-technique in Equatiori.(11) is not preferable, as it migtatd to
negative entries in the diagonalized mass matrix; otheersels are also not perfect. For this
reason Serendipity elements are not used here, though tir&ywery well for implicit methods.

4 Treatment of ‘Locking’ Phenomena

A very important issue concerning the implementation ofdoarder shell finite elements is the
activation of artificial stresses for different loadingugitions, the so-calleddcking’ phenom-
ena. Though not as distinctive as in elements with linegsldcement interpolation, locking
also appears with quadratic shape functions and can beaeéduor even completely removed
— by several corrections within the element formulatiorog@sals for locking-free Solid-Shell
elements, using reduced integration rules together wathilstation techniques against artificial
kinematics can be found inl[1, 19,(7,/20]. In the current dbation, fully integrated element
formulations are presented, where different locking pinesaa are treated with the well-known
methods of Assumed Natural Straif®NS)’ [2| 6] and ‘Enhanced Assumed Strai(iSAS)’
[23,22], which have already been applied to Solid-Shelinglets for non-linear implicit anal-
yses|[11] 9, 10].



4.1 Assumed Natural Strains

The so-calledgeometriclocking effects, e.g. (transverse) shear locking, cumeatbickness
locking and — when using quadratic interpolation of geognetialso membrane locking are
treated with the method oAssumed Natural StraiflANS)’. Specific loading scenarios lead
to artificial stiffnesses, caused by an insufficient intépon of the strains. This behavior can
be cured by evaluating the strain function at sampling goamid interpolate these values with
a specific order. The method was presented for four node eksrbg BATHE and D/ORKIN in

[2] for transverse shear strains and extended By H and SEIN in [4] and independently
by BiIscHoFFand RaMMm in [5] to normal strains in thickness direction. An applicatof the
method to elements with quadratic shape functions was pied®y BJICALEM and BATHE in
[6].

CARDOSO ETAL suggested for linear Solid-Shell elements.in [7] an evadunadt two sam-
pling points over the thickness & —1/¢ = 1), together with a linear interpolation in thickness
direction. The implemented linear and quadratic SolidiSbiemulations contain interpolations
of the transverse shear strains and — in order to cure membyeking — the membrane strains
of the quadratic elements are also interpolated. As an ebeartie interpolation rule for the
transverse shear straff) is given for the linear

21
ANSETZC <Z§ 1+§z nC(gzanla_ )) +

=1
2

1+C <Z% (I+&&) nC(fu%U)
i=1

with

G=(-11) , m=(00) (12)

and for the quadratic Solid-Shell formulation

3 2
ANSE??C _ %(1 — () (ZZ(] by Epe (&, my, —1 )) +

C) (qug En( £Z7?7]7 ))
with
1/91/5/3 5/3& — 1
B 1/_{/3752(W£ ) o { =
& C T (14 V3
Yo /s (Vo2 +1)
E=(—v33 0 3s) ;o= (=Ys /s ) (13)

The different strain components are evaluated at diffegsantpling points and interpolated in a
similar way, in order to eliminate the artificial stiffnedeets.

An interpolation of the normal strains in thickness direntin order to cure the so-called
‘Curvature Thickness Locking’ is proposed b¥gBscHand SEIN in [4] and BiIscHOFFand
RAMM in [B] for 4-node shell elements. The strains are evaluatétleaelement nodes and

and
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interpolated with the Lagrangian shape functions. For tleSShell elements, the evaluation
of the strains is performed at the nodes of the mid-surfab&weads to

4

ANSEee = > NIM™Em) Eee(&im) - (14)

=1

for the linear and

9
AWNSEee = Y NP ) Eee(&im) (15)

=1

for the quadratic formulations.

4.2 Enhanced Assumed Strains

Unlike the geometrical locking effects, which are contdllby the interpolation of geome-
try and displacements, the so-called material locking e ed$éerred as volumetric locking or
PoissoNlocking — is controlled by a material parameter, th@$5s0oNratio . An important
example for Solid-Shell elements is the so-calledgsoNthickness locking, which goes back
to the fact that for a pure bending scenario, the conditiodisfppearing normal thickness
stresses can not be satisfied in general. This leads to aly stiirbehavior, especially near
the incompressible limit{ — 0.5). At v = 0.0, the locking effect does not appear at all, as the
stress components are uncoupled.

As a general concept to avoid artificial stresses, tehanced Assumed Straimethod
(EAS) was introduced by 180 and RFAl in [23] and generalized by I80 and ARMERO
in [22]. The method is based on the idea of enhancing the cbioigatrain field by introducing
additional degrees of freedom, which can be condensed ceieament level.

For the current contribution, different EAS formulatiores/e been implemented in order to
cure PbIssoNthickness locking for Solid-Shell elements. Therefordy dime normal strains in
thickness direction have to be enhanced using

5 det JO
B detd
whereJ, describes the Jacobidn evaluated at the element center ands required for trans-

formation to the local element co-ordinates. The matidégontain the interpolation functions
for example for linear elements

M'=[C], M=[C ¢ n¢land M*=[¢ £C n¢ &n¢]. (A7)

The superscript at the matricd4 indicates the number of additional degrees of freedom and
hence the dimension of the vector. In order to reach a consistent enhancement for the
quadratic Solid-Shell formulatio®, parameters are necessary with the interpolation matrix

M*=[¢ €C n¢ &n¢ &¢ n*¢C €n¢ &P ] . (18)

On element level, the internal energy can now be computedl tvé compatible and the en-
hanced strains as in Equatidn (9). An additional conditias to be satisfied locally, leading to
the increment of the additional degrees of freedom

t33 1\/[Z (8 28 (16)

Aa=-D'P, (19)



with the matrices
P=II"Y and D=II7%, (20)

as derivatives of the internal energy with respect to thetimhal degrees of freedom.

As can be seen in Equatidn (19), the maldiXrom Equation[(2D) has to be inverted on ele-
ment level. The dimension of this square matrix is equaléatlimber of EAS parameters, thus
the numerical effort of the EAS elements is strongly affddig the number of enhancements.

5 Implementation Concept

Compared to implicit time integration algorithms, whicle @ominated by the solution of equa-
tions, the central difference scheme as an explicit timegirgtion method requires far less op-
erations on global level. As discussed in Secfibn 2, onlyoreaperations have to be performed
on global level. This and the already mentioned very smiadétsteps lead to the fact that —
within an explicit time integration scheme — most of the timecessary for an entire structural
analysis, is spent on element level. In different exampesputed with the in-house finite
element code EAP-MEKA [21], based on EAP by R.L. TAYLOR, up to — or even more than
- 90 % of the overall CPU-time had been spent on element level. &omaercial codes, this
fracture may be smaller, due to computationally expensreegrures on global level which
are not yet implemented in the explicit version of the useatlamic code, e. g. contact search
algorithms. Nevertheless it is obvious, that the elementgssing requires a dominant part of
the overall simulation time, which motivates an efficienplementation of element code.

51 AceGen

In order to achieve an efficient and comfortable impleméonatf the subroutines on element
level, the improved — so-calleGgltomati¢ — code generation and optimization tooCAGEN,
a plug-in for the computer algebra softwarexMiEMATICA is used. The program is devel-
oped by the group of BRELC, seel[13] 16, 14]. The plug-in uses the symbolic capalslitie
of MATHEMATICA in order to create automatically optimized program code dRFRAN. It
is possible to enter formulas as written, without bothebgut programming issues. Hence
matrix operations, summations, differentiation — alsdwsspect to vectors and matrices — can
be implemented straight forward and programming errorsdoeareduced significantly.

For the numerical integration of Equatidn (9) at the curtane step, the operation

. 8H2n " “ - ow ERIVE)
fznt — t — Z Z % det J(fz,nga@) W; Wi Wk (21)

has to be evaluated for each element using an integratienamtih 7 X m quadrature points
in-plane andn points in thickness direction. @eGEN allows the usage of MIHEMATICAS
symbolic capabilities, so implemented functions can beluserder to perform matrix oper-
ations or differentiations. This increases the convergesfcprogramming and decreases the
number of programming errors considerably. Also the computal speed is increased by us-
ing automatic code generation, which is shown in the follmysection. For implementation,
the following steps — itemized in Figuré 2 — have to be caroied



initialization of ([ . . .
) begin of integration loo
ACEGEN routine 9 9 P
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shape functionsV; (&)
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Green-Lagrange strains

[ ] internal energy
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v

transfer to ( end of
main program integration loop

Figure 2: implementation flow-chart for element subroutiign ACEGEN



Initialization: The subroutine as well as the input (geometry, current dcgvhents, coor-
dinates and weights of the quadrature points and materrainpeters) and output variables
(internal force vector) are defined. The usede&EN commands ar&MSI niti al i ze and
SMSMbdul e.

Element matrices: After the import of the element data, the necessary matandwectors —
Jacobian, convective base vectors, Green-Lagrange straor, etc. — can be evaluated using
MATHEMATICA’s symbolic capabilities. Differentiation with respectwvariables or tensors is
also possibleSMSD), which is used e. g. to evalua]ﬂ-;igt.

Export internal force vector: The internal force vector at the current integration poi h
to be exported, to be available outside the symbolic subreuThe comman&VSExpor t is
used with the optiofi Addl n" =Tr ue in order to automatically sum the results for all quadra-
ture points to the global memory field.

Code generation: In the last step, BRTRAN-code is generated and automatically optimized,
using the comman@&VSW i t e. The language (BRTRAN, C, etc.) and the level of opti-
mization depend on options, definedSiVSI ni ti al i ze. Figure[3 shows a portion of this
automatically generateddRTRAN-code.

The efficiency and performance of the automatically geeerahd simultaneously optimized
subroutines is coupled to some conditions and rules, onéohasnsider when using the pro-
gramming tool. The main challenge is to reach a consequg@titapon of the symbolic capa-
bilities. It is important to identify the numerically ‘expsive’ operations within an algorithm
and concentrate them into as few as possible routines. Tihaivésion of a procedure into
many small routines as it is usually done in manual programgns not optimal here, as the
symbolically used variables have to be initialized evemeti In the present case, all operations
necessary for the computation of the internal forces armpeed in a single routine as shown
symbolically in Figuré 2. ConsequentlyCAGEN is able to optimize the generated code with
regard to the performed operations and produce highly effiatode. Compared to manual
programming, the initialization and introduction of vdnies as well as the transfer of data into
and out of the subroutine is the main difficulty when usinge&EN. Another problem is the
debugging, as the generated code is not longer readableandsecseen in Figufé 3. Further
any change in the program requires a complete re-genermaitihve subroutine with AEGEN
Errors in the initialization of variables can lead to wroegults when performing e. g. symbolic
differentiations. This errors can only be found and cordaising MATHEMATICA, as manual
debugging is not possible.

The correct application of &EGEN — which required some learning time and gaining of
experience — allows the direct implementation of symbdigoathms and the fast and error-
free generation of program code. Also modification in thenglet formulation can be imple-
mented without programming errors. The generated codegigyhefficient, as can be seen in
the following numerical examples. As the contrast an imprognt of manually implemented
routines in order to achieve a significant speed-up is eximguand error-prone and hence
time-consuming.
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[-..]

v(1061) =v(1624) xv(616)

v(1062) =v(1625) *v(616)

v(1063) =v(1626)*v(616)

v(1064) =v(1624)*v(572) +v(1621) v (599)
v(1065) =v(1625) *xv(572) +v(1622) xv(599)
v(1066) =v(1626) *v(572) +v(1623) *v(599)
[-..]

Figure 3: exemplary section of automatically generatedaptiinized FORTRAN code

q(t)

/ i h E = 210-10° ¢ = 10
% v = 0.0/0.3/0.499 b = 1
— -9 _
‘ ; wal b p = 785-10 ho= 01
‘ 100go 0.00 < ¢ < 0.01
| | q(t) = @ = 1
o 0.01 < t < 0.02
v=0.000 v=0.300 v=0.499
8 8 8
< ] < 5 Ao
z 6 z 6 z 6 V4
5 5 5 o
GE) 4 w/o EAS —— GE) 4 w/o EAS —— g 4 o w/o EAS ——
23 1-Parameter 2 1-Parameter 3 j"’ 1-Parameter
s 2/ 3—Parameter a 2 3—Parameter s 27 3—Parameter
3 0 4-Parameter 3 0 4-Parameter B 0 4—Parameter
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
time time time

Figure 4: Test for volumetric locking; Cantilever with tipdd, varying BISsONratio

6 Numerical Examples

6.1 Bending of Cantilever Beam

As a first, very simple example, a benchmark for volumetrakiong, well-known from static
analyses — the clamped cantilever beam with tip load — igelized with regular mesh af0
linear Solid-Shell elements. As the boundaries are chosgically determinate and geomet-
rical locking effects are cured, the tip displacementmust be invariant against theoBssoN
ratio v. As shown in Figurél4 and known from statics, three EAS-patams are sufficient
for correct results in this example. For= 0.30, even one single EAS-parameter is enough
to cancel the locking effect, which is especially importortexplicit analyses regarding the
numerical effort. The CPU-times measured in the presemhples fory = 0.00 are

e without EAS:82 sec

e 1 EAS parameteri04 sec

e 3 EAS parameteri62 sec

e 4 EAS parameter223 sec.
It must be noted, that a time history analysis is performethis quasi-static case with15 mill.
time steps in order to demonstrate the functionality of thplemented approach in the con-
text of an explicit time integration scheme . A simulationtbé same example with a fully
integrated manually programmed element formulation mregiiic96 sec, which shows the effi-

ciency of the AAEGEN generated routines. A manual improvement or the routindsaoyl is
possible, but would be time consuming and error-prone.
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0.0 0.10 0.15

Figure 5: Thin elastic plate with impacting rigid sphere:daometry and boundary conditions;
(b) loading diagram; (c) material and geometrical data

6.2 Thin Elastic Plate with Contact

In a second, more sophisticated example, the impact of aellstic plate on a rigid sphere
is simulated. The contact between the elastic structuretlaadigid surface is realized by
a ‘Mortar’-type penalty contact formulation (i. &aulSpoirtwise penetration check) with an
analytical description of the contact surface. The openatiof the contact routines, which
also have to be performed for every time step have also begleimnented using 8EGEN, but
will not be discussed here in detail. Geometry and materigbgrties, as well as the loading
scenario in the form of a displacement boundary conditigulieg to the plate’s edges can be
obtained from Figurgl5.

6.2.1 Performance Study

The simulation with the first load curve with a maximum diggaent ofA; = 0.5 lead to

a bending dominated deformation of the structure. In ordeshiow the efficiency of the im-
plemented element and contact algorithms, the simulatsrbleen performed with a pure dis-
placement formulation without any strain modificationsfaaghis formulation, the routines are
available both manually programmed and#SEN generated. Tabld 1 shows the CPU-times
of the simulations on a0 x 20 element mesh with linear Solid-Shells, which requis&d! 20
time steps. As can clearly be seen, thee&EN routines lead to a significant decrease of the
computational effort — in this example, the CPU-time candsiiced by a factor of5. The in-
fluence of the contact routines is smaller, as the fractiaoatfact processing itself — compared
to the element operations — is smaller in this example. Tgk &fficiency of the implemented
routines can be reached without any manual improvementeoptbgram code, as @ZeGEN
simultaneously optimizes the code regarding the operatidhis leads to a faster program as
well as to a faster and less error-prone programming.
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Solid-Shell subroutine | contact subroutine | CPU-time([s] | relative
manually manually 3202 | 100.00 %
manually ACEGEN 3103 | 96.91%
ACEGEN manually 309 9.65 %
ACEGEN ACEGEN 207 | 6.46%

Table 1: CPU-times of simulations with manually and#SEN programmed routines

reference
node

t = 0.000 sec t = 0.060 sec

t = 0.065 sec t = 0.150sec
Figure 6: ‘snap-through’ effect of thin elastic plate

6.2.2 ‘Snap-Through’ Effect

Regarding the second loading displacement curve givengar&lis (b) with a maximum dis-
placement ofA; = 0.9, the structure shows a ‘snap-through’ effectdats 0.60. The appli-
cation of explicit time integration, which is not affecteg singularities of the system matrix
as in implicit static analysis allows the simulation of stural stability problems as a dynamic
‘snap-through’ process.

The structure is simulated with different meshes with Im&ad quadratic Solid-Shell ele-
ments. In Figur&]7 the vertical displacements of the refararode, depicted in Figufé 5 are
given. The left diagram shows the results of the completaisitions, which correlate very
well for the different discretizations. As can be seen indeé&il on the right side, far more
linear elements are necessary in order to reproduce thiksresached with the quadratic shape
functions. This clearly shows the improvement of the geoyreetd displacement interpolation
when using higher order elements, especially at curved ga@s. This conclusion would be
even more articulate when investigating initially curvesbmetries with high curvatures.
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(a) displacement of reference node (b) detail with ‘snap-through’

Figure 7: results of different discretizations with lin@ard quadratic Solid-Shells

7 Conclusions& Outlook

In the paper Solid-Shell element formulations with linead ajuadratic interpolation of the
in-plane geometry and displacement wAlssumed Natural Strainand Enhanced Assumed
Strainsin order to reduce artificial stiffness effects are presgnfen implementation concept
using the automatic code generation to®@=#SEN based on the computer algebra program
MATHEMATICA is shown and the advantages regarding programming and ¢atignal effi-
ciency are discussed. Especially in the context of expligie integration, efficient element
routines are very important, as the fracture of elementgesiag on the overall simulation time
is extremely high. The numerical examples show the impre@rerof the ACEGEN generated
element routines compared to a manually performed impléaien.

In the course of the project, the application oE#GEN for further element formulations
is planned, also structural elements (i. e. shell elemenit) linear and quadratic geometry
and displacement interpolations are currently implengnés they are especially important
for applications with explicit time integration. As a vergsitive result we can conclude that
the use of symbolic programming seems to be advantageouarig applications in structural
mechanics. A very promising application is the implemeaatadf complex material models, as
here the advantage of automatic differentiation is paldityinteresting.
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