
Institute of Mechanics

Software Supported Implementation of
Efficient Solid-Shell Finite Elements

September 2010

Steffen Mattern, Karl Schweizerhof

Institute of Mechanics
Kaiserstr. 12

D-76131 Karlsruhe
Tel.: +49 (0) 721/ 608-2071
Fax: +49 (0) 721/608-7990

E-Mail: info@ifm.kit.edu
www.ifm.uni-karlsruhe.de

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Software Supported Implementation of Efficient
Solid-Shell Finite Elements

Steffen Mattern Karl Schweizerhof

Abstract

The operations necessary for the computation of the internal nodal force vector are in
general the most time-consuming parts of an explicit FE-analysis. The paper presents an
implementation concept for element routines for volumetric shell – the so-called Solid-
Shell – elements based on the application of the symbolic programming tool ACEGEN, a
plug-in for the computer algebra software MATHEMATICA . This symbolic implementation
means that vector and matrix operations and differentiations do not have to be computed
in advance in order to realize a conversion into a programming language. Consequently,
programming errors can be avoided almost completely and less time is required for the
implementation. Program code in FORTRAN is generated and simultaneously optimized
automatically, which leads to very efficient routines compared to manually implemented
code.

1 Introduction

In order to realize a continuum-like modeling of a shell structure and being able to to capture
3D effects as in laminated shells, the so-called Solid-Shell element class, presented e.g. in
[18, 11], with linear interpolation of geometry and displacements in thickness as well as in
shell surface direction is a suitable alternative to purely3D analysis. As the formulation allows
independent interpolation for the in-plane and the out-of-plane direction, a separate higher order
interpolation only in the shell-surface plane as often needed for arbitrary curved shell geometries
is possible.

The most widely-used explicit time integration method is the central difference scheme,
often also called VERLET algorithm [24]. For lumped mass matrices the costly solution of
coupled linear equations on global level is not necessary; further the usage of diagonalized
mass matrices solely requires vector operations, which leads to low computational cost per time
step. Unfortunately, due to the so-called COURANT criterion [8], the time step size is limited to a
critical value, which makes the central difference method mostly attractive for ‘highly dynamic’
problems like impact, strong nonlinearities and short duration transient analyses, where small
time steps are required anyway.

In this contribution the focus is on an implementation concept for Solid-Shell elements us-
ing linear/ quadratic interpolation of geometry and displacements in in-plane direction together
with a linear interpolation in thickness direction. Besides the pure displacement formulation
with standard (full) numerical integration, which – as is well-known – leads to an overly stiff
behavior, the implementation of different approaches in order to reduce these so-called locking
phenomena are discussed. Regarding geometric locking effects, the method of ‘Assumed Nat-
ural Strains’ (ANS) [2, 6, 4, 5], where the strains are evaluated at specific sampling points and

2

interpolated with the desired order is applied. POISSON locking, which affects simulations near
the incompressible limit is cured with different versions (i. e. different numbers of parameters)
of the ‘Enhanced Assumed Strain’ (EAS) method [23, 22].

The implementation concept is based on the application of the symbolic programming tool
ACEGEN, q.v. [15, 13], which allows a combination of symbolic operations together with the
automatic generation of highly efficient program code. BothANS and EAS schemes are also
implemented applying symbolic programming. The generatedsubroutines are implemented
into the in-house finite element code FEAP-MeKa [21]. The specifics of the implementation
concept are discussed and the efficiency and functionality of the element formulations are pre-
sented on numerical examples.

2 Explicit Time Integration

For numerical time integration, the well-known central difference method is used and imple-
mented as proposed e. g. in [3] or originally for molecular dynamics in [24]. Here the governing
equations are shown briefly.

For the current time stepn, the accelerations are computed as

d̈
n = M

−1
(

f
n −C ḋ

n−1/2
)

, (1)

with the diagonalized system mass matrixM, the system load vectorfn at timen, the system
damping matrixC and the velocitieṡdn−1/2 at time stepn− 1/2. The velocity between two time
steps is updated by

ḋ
n+1/2 = ḋ

n−1/2 + ∆tn d̈
n (2)

with ∆tn = (∆tn+∆tn−1)
2

, which leads to the displacements

d
n+1 = d

n + ∆tn ḋ
n+1/2, (3)

with the current time step size∆tn = tn+1− tn. The time step size is limited by the COURANT-
criterion by

∆t ≤ α ∆tcrit = α
2

ωmax

≈ α

(

min
e

le
ce

)

, (4)

whereωmax is the largest eigenfrequency,le represents a characteristic element length andce the
wave propagation velocity. The COURANT-criterion is based on linear problems, so in order to
consider non-linearities, the factorα < 1 is introduced. For moderately non-linear application,
usuallyα = 0.9 is sufficient, for applications as e. g. high-speed impact problems,α may have
to be0.9 or even less.

The implementation of the central difference method leads to a system of uncoupled linear
equations and only vector operations are performed on global level if diagonal mass matrices
are used. This leads to very little CPU-time requirements per time step, compared to implicit
methods. The limitation of the time step by Equation (4) makes this method especially appro-
priate for highly dynamic applications such as crash or impact and for problems with strong
non-linearities. For long-term dynamic problems, a very large number of time steps is required,
which may lead to a long simulation time, however it is a purely time marching scheme. Effi-
ciency depends mainly on the evaluation of the internal forces, the main topic of the following
sections.

3

ξ

η

ζ

e
e

e X

3

2

1 l

uX

Figure 1: geometry of a solid shell

3 The Solid-Shell Concept

In this section, a very short introduction into the Solid-Shell concept is given. For more detailed
information, it is referred to the comprehensive literature, e.g. [18, 11, 17]. More recent devel-
opments regarding especially the treatment of artificial stiffness effects by reduced integration
techniques are given e. g. in [1, 19, 7, 20] in the context of implicit finite element applications.

3.1 Kinematics

The Solid-Shell concept provides a shell formulation with displacement degrees of freedom
only. Under the assumption of the degenerated shell conceptthat the normals to the mid-surface
remain straight, following the notation given in Figure 1, the initial geometry is given by

X(ξ, η, ζ) =
1

2
((1 + ζ)Xu(ξ, η) + (1 − ζ)Xl(ξ, η)) , (5)

Linear interpolation of the displacements of the upper and the lower surface leads to

u(ξ, η, ζ) =
1

2
((1 + ζ)uu(ξ, η) + (1 − ζ)ul(ξ, η)) . (6)

In this contribution, linear and quadratic, isoparametricSolid-Shell elements are used with bi-
linear/ bi-quadratic interpolation in membrane and linearinterpolation in thickness direction.
For the discretization of the initial geometry, this leads to

X
el(ξ, η, ζ) =

nip
∑

i=1

(

1

2
Ni(ξ, η)Θ(ζ)Xi

)

, (7)

wherenip is the number of in-plane nodes. The upper and lower nodal locations are described
by the vectorXi =

[

Xiu Xil

]T
, the interpolation is performed linearly in thickness direction

with the interpolation matrixΘ(ζ). The in-plane interpolation is achieved in the present case
with linear (nip = 4) or quadratic (nip = 9) Lagrangian shape functions. According to the
isoparametric concept, the displacements are interpolated with the same shape functions. The
application of higher order Lagrangian or Serendipity typeshapes is also possible, quadratic
Serendipity functions e. g. lead to a formulation with16 element nodes (nip = 8).

4

3.2 Residual Force Vector

The system force vector in Equation (1) is composed of the globally defined external nodal
forcesfext and the internal nodal forcesf int which are computed on element level. The internal
forces can be written as the derivative of the internal energy Πint with respect to the vector
of nodal degrees of freedomd. The implemented element formulations are formulated with
different hyper-elastic material models as e. g.Neo-Hookematerial law, defined by the strain
energy function

W (C) =
µ

2
(IC − 3) − µ ln J +

λ

2
(lnJ)2 with J2 = IIIC , (8)

with the first and third invariantIC andIIIC of theright Cauchy-Green deformation tensor. The
internal energy and hence the internal nodal force vector isthen obtained by

Πint =

∫

V

W (C) dV , f
int = Πint

,d =
∂

∂ d

∫

V

W (C) dV . (9)

3.3 Mass Matrices

As mentioned in Section 2, an efficient usage of the central difference method implies diago-
nalized mass matrices. The entries of the consistent element mass matrixMel

M
el =

∫

V

ρN · NT dV (10)

with the shape functions assembled in the matrixN are therefore e. g. summed up row by row,
in order to achieve the diagonalized form

Mel,d
ij =

∑

k Mel
ik i = j

0 i 6= j
(11)

For element formulations using the Lagrangian shape functions, this method leads to identical or
very similar mass matrices as other methods as e. g. described in [12] such as ‘nodal integration’
or ‘scaled diagonals’ which are also implemented in our code. When using Serendipity type
shape functions, the ‘row-sum’-technique in Equation (11) is not preferable, as it might lead to
negative entries in the diagonalized mass matrix; other schemes are also not perfect. For this
reason Serendipity elements are not used here, though they work very well for implicit methods.

4 Treatment of ‘Locking’ Phenomena

A very important issue concerning the implementation of lower order shell finite elements is the
activation of artificial stresses for different loading situations, the so-called ‘locking’ phenom-
ena. Though not as distinctive as in elements with linear displacement interpolation, locking
also appears with quadratic shape functions and can be reduced – or even completely removed
– by several corrections within the element formulation. Proposals for locking-free Solid-Shell
elements, using reduced integration rules together with stabilization techniques against artificial
kinematics can be found in [1, 19, 7, 20]. In the current contribution, fully integrated element
formulations are presented, where different locking phenomena are treated with the well-known
methods of ‘Assumed Natural Strains(ANS)’ [2, 6] and ‘Enhanced Assumed Strains(EAS)’
[23, 22], which have already been applied to Solid-Shell elements for non-linear implicit anal-
yses [11, 9, 10].

5

4.1 Assumed Natural Strains

The so-calledgeometriclocking effects, e. g. (transverse) shear locking, curvature thickness
locking and – when using quadratic interpolation of geometry – also membrane locking are
treated with the method of ‘Assumed Natural Strains(ANS)’. Specific loading scenarios lead
to artificial stiffnesses, caused by an insufficient interpolation of the strains. This behavior can
be cured by evaluating the strain function at sampling points and interpolate these values with
a specific order. The method was presented for four node elements by BATHE and DVORKIN in
[2] for transverse shear strains and extended by BETSCH and STEIN in [4] and independently
by BISCHOFF and RAMM in [5] to normal strains in thickness direction. An application of the
method to elements with quadratic shape functions was presented by BUCALEM and BATHE in
[6].

CARDOSO ET.AL suggested for linear Solid-Shell elements in [7] an evaluation at two sam-
pling points over the thickness (ζ = −1/ζ = 1), together with a linear interpolation in thickness
direction. The implemented linear and quadratic Solid-Shell formulations contain interpolations
of the transverse shear strains and – in order to cure membrane locking – the membrane strains
of the quadratic elements are also interpolated. As an example, the interpolation rule for the
transverse shear strainEηζ is given for the linear

ANSEηζ =
1

2
(1 − ζ)

(

2
∑

i=1

1

2
(1 + ξi ξ) Eηζ(ξi, ηi,−1)

)

+

1

2
(1 + ζ)

(

2
∑

i=1

1

2
(1 + ξi ξ) Eηζ(ξi, ηi, 1)

)

with

ξi =
(

−1 1
)

, ηi =
(

0 0
)

(12)

and for the quadratic Solid-Shell formulation

ANSEηζ =
1

2
(1 − ζ)

(

3
∑

i=1

2
∑

j=1

qi ℓj Eηζ(ξi, ηj ,−1)

)

+

1

2
(1 + ζ)

(

3
∑

i=1

2
∑

j=1

qi ℓj Eηζ(ξi, ηj, 1)

)

with

qi =

1/2

√

5/3

(

√

5/3 ξ − 1
)

1 − 5/3 ξ2

1/2

√

5/3

(

√

5/3 z + 1
)

, ℓj =

{

1/2 (1 −
√

3 η)
1/2 (1 +

√
3 η)

and

ξi =
(

−
√

5/3 0
√

5/3

)

, ηj =
(

−
√

1/3

√

1/3

)

(13)

The different strain components are evaluated at differentsampling points and interpolated in a
similar way, in order to eliminate the artificial stiffness effects.

An interpolation of the normal strains in thickness direction in order to cure the so-called
‘Curvature Thickness Locking’ is proposed by BETSCH and STEIN in [4] and BISCHOFF and
RAMM in [5] for 4-node shell elements. The strains are evaluated at the element nodes and

6

interpolated with the Lagrangian shape functions. For the Solid-Shell elements, the evaluation
of the strains is performed at the nodes of the mid-surface, which leads to

ANSEζζ =

4
∑

i=1

N lin
i (ξ, η) Eζζ(ξi, ηi) . (14)

for the linear and

ANSEζζ =
9
∑

i=1

N quad
i (ξ, η) Eζζ(ξi, ηi) . (15)

for the quadratic formulations.

4.2 Enhanced Assumed Strains

Unlike the geometrical locking effects, which are controlled by the interpolation of geome-
try and displacements, the so-called material locking – also referred as volumetric locking or
POISSON locking – is controlled by a material parameter, the POISSON ratio ν. An important
example for Solid-Shell elements is the so-called POISSON thickness locking, which goes back
to the fact that for a pure bending scenario, the condition ofdisappearing normal thickness
stresses can not be satisfied in general. This leads to an overly stiff behavior, especially near
the incompressible limit (ν → 0.5). At ν = 0.0, the locking effect does not appear at all, as the
stress components are uncoupled.

As a general concept to avoid artificial stresses, the ‘Enhanced Assumed Strain’ method
(EAS) was introduced by SIMO and RIFAI in [23] and generalized by SIMO and ARMERO

in [22]. The method is based on the idea of enhancing the compatible strain field by introducing
additional degrees of freedom, which can be condensed out onelement level.

For the current contribution, different EAS formulations have been implemented in order to
cure POISSONthickness locking for Solid-Shell elements. Therefore, only the normal strains in
thickness direction have to be enhanced using

Ẽ33 =
detJ0

detJ
t33 M

i α , (16)

whereJ0 describes the JacobianJ, evaluated at the element center andt33 is required for trans-
formation to the local element co-ordinates. The matricesM

i contain the interpolation functions
for example for linear elements

M
1 =

[

ζ
]

, M
3 =

[

ζ ξ ζ η ζ
]

and M
4 =

[

ζ ξ ζ η ζ ξ η ζ
]

. (17)

The superscript at the matricesM indicates the number of additional degrees of freedom and
hence the dimension of the vectorα. In order to reach a consistent enhancement for the
quadratic Solid-Shell formulation,8 parameters are necessary with the interpolation matrix

M
8 =

[

ζ ξ ζ η ζ ξ η ζ ξ2 ζ η2 ζ ξ2 η ζ ξ η2 ζ
]

. (18)

On element level, the internal energy can now be computed with the compatible and the en-
hanced strains as in Equation (9). An additional condition has to be satisfied locally, leading to
the increment of the additional degrees of freedom

∆α = −D
−1

P , (19)

7

with the matrices

P = Πint
,α and D = Πint

,αα
(20)

as derivatives of the internal energy with respect to the additional degrees of freedom.
As can be seen in Equation (19), the matrixD from Equation (20) has to be inverted on ele-

ment level. The dimension of this square matrix is equal to the number of EAS parameters, thus
the numerical effort of the EAS elements is strongly affected by the number of enhancements.

5 Implementation Concept

Compared to implicit time integration algorithms, which are dominated by the solution of equa-
tions, the central difference scheme as an explicit time integration method requires far less op-
erations on global level. As discussed in Section 2, only vector operations have to be performed
on global level. This and the already mentioned very small time steps lead to the fact that –
within an explicit time integration scheme – most of the time, necessary for an entire structural
analysis, is spent on element level. In different examples,computed with the in-house finite
element code FEAP-MEKA [21], based on FEAP by R.L. TAYLOR, up to – or even more than
– 90 % of the overall CPU-time had been spent on element level. For commercial codes, this
fracture may be smaller, due to computationally expensive procedures on global level which
are not yet implemented in the explicit version of the used academic code, e. g. contact search
algorithms. Nevertheless it is obvious, that the element processing requires a dominant part of
the overall simulation time, which motivates an efficient implementation of element code.

5.1 AceGen

In order to achieve an efficient and comfortable implementation of the subroutines on element
level, the improved – so-called ’automatic’ – code generation and optimization tool ACEGEN,
a plug-in for the computer algebra software MATHEMATICA is used. The program is devel-
oped by the group of KORELC, see [13, 16, 14]. The plug-in uses the symbolic capabilities
of MATHEMATICA in order to create automatically optimized program code in FORTRAN. It
is possible to enter formulas as written, without botheringabout programming issues. Hence
matrix operations, summations, differentiation – also with respect to vectors and matrices – can
be implemented straight forward and programming errors canbe reduced significantly.

For the numerical integration of Equation (9) at the currenttime step, the operation

f
int =

∂Πint

∂d
=

m
∑

i=1

m
∑

j=1

n
∑

k=1

∂W (ξi, ηj, ζk)

∂d
detJ(ξi, ηj , ζk) wi wj wk (21)

has to be evaluated for each element using an integration rule with m x m quadrature points
in-plane andn points in thickness direction. ACEGEN allows the usage of MATHEMATICA s
symbolic capabilities, so implemented functions can be used in order to perform matrix oper-
ations or differentiations. This increases the convenience of programming and decreases the
number of programming errors considerably. Also the computational speed is increased by us-
ing automatic code generation, which is shown in the following section. For implementation,
the following steps – itemized in Figure 2 – have to be carriedout:

8

initialization of
ACEGEN routine

begin of integration loop

shape functionsNi(ξ)

interpolation of geometry
(X(ξ)) & displacements (u(ξ))

JacobianJ =
∂ X

∂ ξ
,

determinant and inverse

Green-Lagrange strains

internal energy

2nd Piola-Kirchhoff stresses

internal nodal force vector

end of
integration loop

transfer to
main program

AssumedNatural
Strains

EnhancedAssumed
Strains

Figure 2: implementation flow-chart for element subroutinewith ACEGEN

9

Initialization: The subroutine as well as the input (geometry, current displacements, coor-
dinates and weights of the quadrature points and material parameters) and output variables
(internal force vector) are defined. The used ACEGEN commands areSMSInitialize and
SMSModule.

Element matrices: After the import of the element data, the necessary matricesand vectors –
Jacobian, convective base vectors, Green-Lagrange straintensor, etc. – can be evaluated using
MATHEMATICA ’s symbolic capabilities. Differentiation with respect tovariables or tensors is
also possible (SMSD), which is used e. g. to evaluateΠint

,d .

Export internal force vector: The internal force vector at the current integration point has
to be exported, to be available outside the symbolic subroutine. The commandSMSExport is
used with the option"AddIn"=True in order to automatically sum the results for all quadra-
ture points to the global memory field.

Code generation: In the last step, FORTRAN-code is generated and automatically optimized,
using the commandSMSWrite. The language (FORTRAN, C, etc.) and the level of opti-
mization depend on options, defined inSMSInitialize. Figure 3 shows a portion of this
automatically generated FORTRAN-code.

The efficiency and performance of the automatically generated and simultaneously optimized
subroutines is coupled to some conditions and rules, one hasto consider when using the pro-
gramming tool. The main challenge is to reach a consequent application of the symbolic capa-
bilities. It is important to identify the numerically ‘expensive’ operations within an algorithm
and concentrate them into as few as possible routines. The subdivision of a procedure into
many small routines as it is usually done in manual programming is not optimal here, as the
symbolically used variables have to be initialized every time. In the present case, all operations
necessary for the computation of the internal forces are performed in a single routine as shown
symbolically in Figure 2. Consequently, ACEGEN is able to optimize the generated code with
regard to the performed operations and produce highly efficient code. Compared to manual
programming, the initialization and introduction of variables as well as the transfer of data into
and out of the subroutine is the main difficulty when using ACEGEN. Another problem is the
debugging, as the generated code is not longer readable – as can be seen in Figure 3. Further
any change in the program requires a complete re-generationof the subroutine with ACEGEN.
Errors in the initialization of variables can lead to wrong results when performing e. g. symbolic
differentiations. This errors can only be found and corrected using MATHEMATICA , as manual
debugging is not possible.

The correct application of ACEGEN – which required some learning time and gaining of
experience – allows the direct implementation of symbolic algorithms and the fast and error-
free generation of program code. Also modification in the element formulation can be imple-
mented without programming errors. The generated code is highly efficient, as can be seen in
the following numerical examples. As the contrast an improvement of manually implemented
routines in order to achieve a significant speed-up is exhausting and error-prone and hence
time-consuming.

10

[...]
v(1061)=v(1624)*v(616)
v(1062)=v(1625)*v(616)
v(1063)=v(1626)*v(616)
v(1064)=v(1624)*v(572)+v(1621)*v(599)
v(1065)=v(1625)*v(572)+v(1622)*v(599)
v(1066)=v(1626)*v(572)+v(1623)*v(599)
[...]

Figure 3: exemplary section of automatically generated andoptimized FORTRAN code

ℓ wA b

h

q(t)
E = 2.10 · 105 ℓ = 10
ν = 0.0/0.3/0.499 b = 1
ρ = 7.85 · 10−9 h = 0.1

q(t) =

{

100 q0 0.00 ≤ t ≤ 0.01
q0 0.01 < t ≤ 0.02

q0 = 1

 0

 2

 4

 6

 8

 0 0.005 0.01 0.015 0.02

d
is

p
la

ce
m

en
ts

 w
A

time

ν=0.000

w/o EAS
1−Parameter
3−Parameter
4−Parameter

 0

 2

 4

 6

 8

 0 0.005 0.01 0.015 0.02

d
is

p
la

ce
m

en
ts

 w
A

time

ν=0.300

w/o EAS
1−Parameter
3−Parameter
4−Parameter

 0

 2

 4

 6

 8

 0 0.005 0.01 0.015 0.02

d
is

p
la

ce
m

en
ts

 w
A

time

ν=0.499

w/o EAS
1−Parameter
3−Parameter
4−Parameter

Figure 4: Test for volumetric locking; Cantilever with tip load, varying POISSON ratio

6 Numerical Examples

6.1 Bending of Cantilever Beam

As a first, very simple example, a benchmark for volumetric locking, well-known from static
analyses – the clamped cantilever beam with tip load – is discretized with regular mesh of10
linear Solid-Shell elements. As the boundaries are chosen statically determinate and geomet-
rical locking effects are cured, the tip displacementwA must be invariant against the POISSON

ratio ν. As shown in Figure 4 and known from statics, three EAS-parameters are sufficient
for correct results in this example. Forν = 0.30, even one single EAS-parameter is enough
to cancel the locking effect, which is especially importantfor explicit analyses regarding the
numerical effort. The CPU-times measured in the present examples forν = 0.00 are

• without EAS:82 sec

• 1 EAS parameter:104 sec

• 3 EAS parameter:162 sec

• 4 EAS parameter:223 sec .

It must be noted, that a time history analysis is performed for this quasi-static case with1.15 mill.
time steps in order to demonstrate the functionality of the implemented approach in the con-
text of an explicit time integration scheme . A simulation ofthe same example with a fully
integrated manually programmed element formulation required1696 sec, which shows the effi-
ciency of the ACEGEN generated routines. A manual improvement or the routines byhand is
possible, but would be time consuming and error-prone.

11

free boundary
with vertically
prescribed
displacement

free boundary
with vertically
prescribed
displacement

PP ��

ℓ

r

t

d

0.0

∆1

∆2

0.0 0.10 0.15

[d
is

p
la

ce
m

en
t]

[time]

E = 210 · 109

ν = 0.3
ρ = 7.85 · 10−9

ℓ = 2
t = 0.02
r = 0.25
d = 0.01

∆1 = 0.5
∆2 = 0.9

Figure 5: Thin elastic plate with impacting rigid sphere: (a) geometry and boundary conditions;
(b) loading diagram; (c) material and geometrical data

6.2 Thin Elastic Plate with Contact

In a second, more sophisticated example, the impact of a thinelastic plate on a rigid sphere
is simulated. The contact between the elastic structure andthe rigid surface is realized by
a ‘Mortar’-type penalty contact formulation (i. e.Gaußpoint-wise penetration check) with an
analytical description of the contact surface. The operations of the contact routines, which
also have to be performed for every time step have also been implemented using ACEGEN, but
will not be discussed here in detail. Geometry and material properties, as well as the loading
scenario in the form of a displacement boundary condition applied to the plate’s edges can be
obtained from Figure 5.

6.2.1 Performance Study

The simulation with the first load curve with a maximum displacement of∆1 = 0.5 lead to
a bending dominated deformation of the structure. In order to show the efficiency of the im-
plemented element and contact algorithms, the simulation has been performed with a pure dis-
placement formulation without any strain modifications, asfor this formulation, the routines are
available both manually programmed and ACEGEN generated. Table 1 shows the CPU-times
of the simulations on a20 × 20 element mesh with linear Solid-Shells, which required53.120
time steps. As can clearly be seen, the ACEGEN routines lead to a significant decrease of the
computational effort – in this example, the CPU-time can be reduced by a factor of15. The in-
fluence of the contact routines is smaller, as the fraction ofcontact processing itself – compared
to the element operations – is smaller in this example. The high efficiency of the implemented
routines can be reached without any manual improvement of the program code, as ACEGEN

simultaneously optimizes the code regarding the operations. This leads to a faster program as
well as to a faster and less error-prone programming.

12

Solid-Shell subroutine contact subroutine CPU-time [s] relative

manually manually 3202 100.00 %

manually ACEGEN 3103 96.91 %

ACEGEN manually 309 9.65 %

ACEGEN ACEGEN 207 6.46 %

Table 1: CPU-times of simulations with manually and ACEGEN programmed routines

t = 0.000 sec

t = 0.065 sec

t = 0.060 sec

t = 0.150 sec

reference
node

i
�
���

Figure 6: ‘snap-through’ effect of thin elastic plate

6.2.2 ‘Snap-Through’ Effect

Regarding the second loading displacement curve given in Figure 5 (b) with a maximum dis-
placement of∆2 = 0.9, the structure shows a ‘snap-through’ effect at∆ ≈ 0.60. The appli-
cation of explicit time integration, which is not affected by singularities of the system matrix
as in implicit static analysis allows the simulation of structural stability problems as a dynamic
‘snap-through’ process.

The structure is simulated with different meshes with linear and quadratic Solid-Shell ele-
ments. In Figure 7 the vertical displacements of the reference node, depicted in Figure 5 are
given. The left diagram shows the results of the complete simulations, which correlate very
well for the different discretizations. As can be seen in thedetail on the right side, far more
linear elements are necessary in order to reproduce the results reached with the quadratic shape
functions. This clearly shows the improvement of the geometry and displacement interpolation
when using higher order elements, especially at curved geometries. This conclusion would be
even more articulate when investigating initially curved geometries with high curvatures.

13

−0.50

−0.40

−0.30

−0.20

−0.10

 0.00

 0 0.03 0.06 0.09 0.12 0.15

z−
d

is
p

la
ce

m
en

t

time

20x20 quad
40x40 lin
80x80 lin

160x160 lin

(a) displacement of reference node

−0.30

−0.20

−0.10

 0.06 0.0625 0.065

z−
d

is
p

la
ce

m
en

t

time

20x20 quad
40x40 lin
80x80 lin

160x160 lin

(b) detail with ‘snap-through’

��
��

detail-

Figure 7: results of different discretizations with linearand quadratic Solid-Shells

7 Conclusions & Outlook

In the paper Solid-Shell element formulations with linear and quadratic interpolation of the
in-plane geometry and displacement withAssumed Natural Strainsand Enhanced Assumed
Strainsin order to reduce artificial stiffness effects are presented. An implementation concept
using the automatic code generation tool ACEGEN based on the computer algebra program
MATHEMATICA is shown and the advantages regarding programming and computational effi-
ciency are discussed. Especially in the context of explicittime integration, efficient element
routines are very important, as the fracture of element processing on the overall simulation time
is extremely high. The numerical examples show the improvement of the ACEGEN generated
element routines compared to a manually performed implementation.

In the course of the project, the application of ACEGEN for further element formulations
is planned, also structural elements (i. e. shell elements)with linear and quadratic geometry
and displacement interpolations are currently implemented, as they are especially important
for applications with explicit time integration. As a very positive result we can conclude that
the use of symbolic programming seems to be advantageous in many applications in structural
mechanics. A very promising application is the implementation of complex material models, as
here the advantage of automatic differentiation is particularly interesting.

Acknowledgements

The presented work is part of a project, currently funded by the German Research Foundation
(DFG). The support is gratefully acknowledged.

References

[1] R.J. Alves de Sousa, R.P.R. Cardoso, R.A. Fontes Valente, J.W. Yoon, R.M. Natal Jorge,
and J.J. Gracio. A new one-point quadrature enhanced assumed strain (EAS) solid-shell
element with multiple integration points along thickness:Part I – geometrically linear
applications.Int. J. Num. Meth. Eng., 62:952–977, 2005.

14

[2] K.-J. Bathe and E.N. Dvorkin. A formulation of general shell elements - the use of mixed
interpolation of tensorial components.International Journal For Numerical Methods In
Engineering, 22:697–722, 1986.

[3] T. Belytschko, W.K. Liu, and B. Moran.Nonlinear finite elements for continua and struc-
tures. Wiley, 2004.

[4] P. Betsch and E. Stein. An assumed strain approach avoiding artifical thickness strain-
ing for an non-linear 4-node shell element.Communications In Numerical Methods In
Engineering, 11:899–909, 1995.

[5] M. Bischoff and E. Ramm. Shear deformable shell elementsfor large strains and rotations.
International Journal For Numerical Methods In Engineering, 40:4427–4449, 1997.

[6] M.L. Bucalem and K.-J. Bathe. Higher-order mitc generalshell elements.International
Journal For Numerical Methods In Engineering, 36(21):3729–3754, 1993.

[7] R.P.R. Cardoso, J.W. Yoon, M. Mahardika, S. Choudhry, R.J. Alves de Sousa, and R.A.
Fontes Valente. Enhanced assumed strain (eas) and assumed natural strain (ans) meth-
ods for one-point quadrature solid-shell elements.International Journal For Numerical
Methods In Engineering, 75:156–187, 2008.

[8] R. Courant, K.O. Friedrichs, and H. Lewy.̈Uber die partiellen Differenzengleichungen
der mathematischen Physik.Mathematische Annalen, 100:32–74, 1928.

[9] M. Harnau, K. Schweizerhof, and R.Hauptmann. On ’solid-shell’ elements with linear
and quadratic shape functions for small and large deformations. ECCOMAS Congress,
11, 2000.

[10] R. Hauptmann, S. Doll, M. Harnau, and K. Schweizerhof. ‘solid-shell’ elements with
linear and quadratic shape functions at large deformationswith nearly incompressible ma-
terials.Computers & Structures, 79(18):1671–1685, 2001.

[11] R. Hauptmann and K. Schweizerhof. A systematic development of ‘solid-shell’ element
formulations for linear and non-linear analyses employingonly displacement degrees of
freedom.Int. J. Num. Meth. Eng., 42(1):49–69, 1998.

[12] Thomas J. R. Hughes.The finite element method. Dover Publ., dover ed., 1. publ. edition,
2000.

[13] J. Korelc. Automatic generation of finite-element codeby simultaneous optimization of
expressions.Theoretical Computer Science, 187(1-2):231–248, 1997.

[14] J. Korelc. Multi-language and multi-environment generation of nonlinear finite element
codes.Engineering with Computers, 18(4):312–327, 2002.

[15] J. Korelc.http://www.fgg.uni-lj.si/Symech/, 2010.

[16] J. Korelc and P. Wriggers. Computer algebra and automatic differentiation in derivation
of finite element code.ZAMM, 79:811–812, 1999.

[17] C. Miehe. A theoretical and computational model for isotropic elastoplastic stress analysis
in shells at large strains.Comput. Meth. Appl. Mech. Eng., 155(3-4):193–234, 1998.

15

[18] H. Parisch. A continuum-based shell theory for non-linear applications.Int. J. Num. Meth.
Eng., 38:1855–1883, 1995.

[19] S. Reese. A large deformation solid-shell concept based on reduced integration with hour-
glass stabilization.Int. J. Num. Meth. Eng., 69(8):1671–1716, 2007.

[20] M. Schwarze and S. Reese. A reduced integration solid-shell finite element based on
the eas and the ans concept - geometrically linear problems.International Journal for
Numerical Methods in Engineering, 80(10):1322–1355, 2009.

[21] K. Schweizerhof and Coworkers. Feap-meka, finite element analysis program. Karlsruher
Institut für Technologie, based on Version 1994 of R. Taylor, “FEAP – A Finite Element
Analysis Program”, University of California, Berkeley.

[22] J.C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and
the method of incompatible modes.International Journal For Numerical Methods In
Engineering, 33:1413–1449, 1992.

[23] J.C. Simo and M.S. Rifai. A class of mixed assumed strainmethods and the method of
incompatible modes.Computers & Structures, 29:1595–1638, 1990.

[24] L. Verlet. ‘Experiments’ on classical fluids I. Thermomechanical properties of Lennard-
Jones molecules.Physical Review, 159:98–103, 1967.

16

	Introduction
	Explicit Time Integration
	The Solid-Shell Concept
	Kinematics
	Residual Force Vector
	Mass Matrices

	Treatment of `Locking' Phenomena
	Assumed Natural Strains
	Enhanced Assumed Strains

	Implementation Concept
	AceGen

	Numerical Examples
	Bending of Cantilever Beam
	Thin Elastic Plate with Contact
	Performance Study
	`Snap-Through' Effect

	Conclusions & Outlook

