

Institut für Hydromechanik (IfH)

Prof. Dr.-Ing. Markus Uhlmann

Institut für Mechanik (IFM)

Prof. Dr.-Ing. Peter Betsch Prof. Dr.-Ing. Thomas Seelig

Institut für Strömungsmechanik (ISTM)

Prof. Dr.-Ing. Bettina Frohnapfel

Institut für Technische Mechanik (ITM)

Prof. Dr.-Ing. Thomas Böhlke Prof. Dr.-Ing. Alexander Fidlin Prof. Dr.-Ing. Carsten Proppe Prof. Dr.-Ing. Wolfgang Seemann

Kolloquium für Mechanik / Graduiertenkolleg 1483

Referent: Dr.-Ing. Rainer Glüge

Otto-von-Guericke-Universität, Magdeburg

Datum: 04.03.2015 Uhrzeit: 10:00 Uhr

Ort: Geb. 11.10, Kl. ETI

https://www.eti.kit.edu/anfahrt.php

Titel: Numerical aspects of strain gradient elasticity

Abstract

The use of strain gradients in material models requires additional effort when boundary value problems are solved numerically with the Finite Element Method (FEM), compared to the usual second-order partial differential equations (PDE) that arise in the case of simple materials. In short, one needs to introduce either the first gradient $\mathbf{H} = \mathbf{u} \otimes \nabla_0$ as a new field, and enforce $\mathbf{H} = \mathbf{u} \otimes \nabla_0$ weakly by solving two coupled systems of PDEs with C_0 continuous approximations of \mathbf{u} and \mathbf{H} (implicit strain gradient), or construct C_1 continuous approximations of the displacement field \mathbf{u} (explicit strain gradient). In both cases, additional degrees of freedom are introduced. This requires an extension of standard FE codes, which I shall address in my talk. Specifically, I intend to cover the following points:

- Discussion of the advantages and drawbacks of explicit and implicit strain gradient implementations
- From the PDEs to the weak form in 3D gradient elasticity
- Constructing C₁ continuous elements
- Implementation as user elements into Abaqus

Alle Interessenten sind herzlich eingeladen.

Prof. Dr.-Ing. Thomas Böhlke