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Introduction

Element Q1P0ET2 [1]: combination of

• Nonlinear mixed pressure element Q1P0 [3]
• EAS formulation with transposed Wilson Modes Q1ET4 [2]

Q1P0ET2

pure displacement element Q1

mixed pressure element Q1P0

EAS formulation

transposed
Wilson modes

two enhanced
parameters

Locking- and hourglassing-free element for nonlinear hyperelas-
tic large deformations

Mixed Pressure Element Q1P0

Key idea: dilatation θ as additional variable

θ = J enforced with Lagrange Multiplier p

Volumetric-deviatoric split of right Cauchy-Green tensor

C
STP =

vol︷︸︸︷
θ2/3

¯
C︷ ︸︸ ︷

J−2/3
Cϕ with

√
det(C̄) = 1

Variational potential

ΠSTP
int (ϕ, p, θ) =

∫

B0

[
W̄ (C̄) + U(θ) + p (J − θ)

]
dV

Discretization of pressure and dilatation

θh,e = const. and ph,e = const.

EAS Formulation Q1E4

Key idea: enhancement of deformation gradient F with F̃

Ĉ = F̂
T
F̂ with F̂ = Fϕ + F̃

Stress like Lagrange multiplier P enforces F̃ = 0

(eliminated in discrete formulation via orthogonality)

Variational potential

ΠEAS
int (ϕ,P,Γ) =

∫

B0

[
W (Ĉ)−P : F̃

]
dV

Discretization of enhanced deformation gradient with transposed
Wilson modes

F̃ =
jh,e0

jh,e(ξ)

(
J
h,e
0

)−T
[
Γh,e
1 ξ Γh,e

2 η

Γh,e
3 ξ Γh,e

4 η

](
J
h,e
0

)−1

Mixed Pressure EAS Element Q1P0ET2

Definition of mixed Cauchy-Green tensor

C
A =

vol︷︸︸︷
θ2/3

¯
C

A

︷ ︸︸ ︷
Ĵ−2/3

Ĉ withĈ = F̂
T
F̂ and Ĵ =

√
det(Ĉ)

Modified split neo-Hookean strain-energy function

W = W̄ (C̄
A
) + U(θ) =

µ

2

(
tr C̄

A
− 3

)
+
κ

2

(
1

2

(
θ2 − 1

)
− ln θ

)

Variational potential with two kinematic constraints

ΠA
int(ϕ,P,Γ, p, θ) =

∫

B0

[
W̄ (C̄

A
) + U(θ)−P : F̃ + p (J − θ)

]
dV

Special interpolation field for deformation gradient

F̃ = Fϕ,0
jh,e0

jh,e(ξ)

(
J
h,e
0

)−T
[

0 Γ1ξ
Γ2η 0

](
J
h,e
0

)−1

Numerical Investigations

Cooks membrane → element is locking-free
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Modal analysis → no spurious instabilities
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First four eigenmodes under compression → no hourglassing in
2D and 3D
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