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Motivation

* enhanced fracture toughness and ductility of ABS (acrylonitrile-butadiene-styrene)
relies on microscopic deformation and damage mechanisms: void growth, shear yielding, crazing

* many details of these mechanisms are still not well understood:
- their individual contribution to the overall toughness

- their dependence on micro-structural parameter (e.g. rubber particle size and volume fraction) o4 Pl TR
[Steenbrink,1998]
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- aim of present study: constitutive modelling of the effect of crazing at different length scales

Continuum modelling of crazing Test example: single craze around void

earlier work: - discrete cohesive zones [Tijssens et al. 2000]
- special continuum finite elements [Socrate et al. 2001]

Craze| p———
present model: - accounts for the essential features of crazing
- crazing considered the only source of inelasticity
- orientation of craze not constrained by FE mesh
kKinematics of inelastic deformation of continuum model ——
Df=en®n flow rule with direction n of max. principal stress
A . . . .
£C = £pexp (T (an — ac>> equivalent visco-plastic strain rate - crazes can freely form in arbitrary directions
. - crack formation by element elimination at critical value of inelastic strain
Op =N 0N resolved normal stress on craze
Homogenized model for distributed crazing Calibration of the homogenized model

in rubber-toughened materials
* uniaxial tensile tests on ABS with unknown composition

on larger length scale: band-like damage zones comprising * estimation of rubber contentto f =~ 0.2
several particles - yield strength relation 7c(A°/A¢,;) fitted to agree with experimental
[Beahan et al, 1976] 3 _
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* stress whitened zone at crack tip for ABS material O 01 02 03 04 ¢

* model for distributed crazing led to more realistic shape
of plastic zone than pure void growth [Pijnenburg et al. 2005]
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