

Institute of Mechanics

Continuum mechanical modeling of processing induced initial anisotropy in the finite strain deformation of amorphous thermoplastic polymers

Philipp Hempel, Matthias Kotlik, Thomas Seelig

Motivation

- injection molding of plastic components gives rise to "frozen-in" molecular stretch and orientation
- examples (injection molded plate and tensile test specimen, PMMA)

heating above

glass transiton

Model response vs. experimental data

uniaxial tensile tests at different strain rates and temperatures on PMMA (below and above glass transition)

molecular orientation visible under polarized light

bright \triangleq high molecular orientation

no orientation left after annealing at 120° C

aim of this work:

predictive modeling accounting for processing influence

Constitutive modeling

including pre-deformation of molecular network with initial inelastic deformation gradient F^{i}

- glass transition temperature strain rate dependent
- requirement for model extension: reduced hardening at high temperatures and low rates (molecular reptation)

Computational examples

- simulation of annealing experiments with injection molded components
- key issue: estimation of "frozen-in" network stretch and orientation from flow field and mapping to FE model
- 5 regions with different initial stretch

flow rule for inelastic rate of deformation tensor in intermediate configuration

$$\hat{\boldsymbol{D}}^{p} = \dot{\gamma}^{p} \frac{\overline{\boldsymbol{\Sigma}}'}{|\overline{\boldsymbol{\Sigma}}'|}, \quad \overline{\boldsymbol{\Sigma}}' = \boldsymbol{\Sigma}' - \hat{\boldsymbol{b}}', \quad \boldsymbol{\Sigma} = \det(\boldsymbol{F}) \ \boldsymbol{F}^{eT} \boldsymbol{\sigma} \boldsymbol{F}^{e-T}$$

backstress (8-chain-model, Arruda & Boyce ,1993)

$$\hat{\boldsymbol{b}} = \frac{1}{3} C^R \frac{\sqrt{N}}{\lambda_c} \mathcal{L}^{-1} \left(\frac{\lambda_c}{\sqrt{N}}\right) \hat{\boldsymbol{B}}^n \quad , \quad \hat{\boldsymbol{B}}^n = \boldsymbol{F}^n \boldsymbol{F}^{nT} \quad , \quad \lambda_c^2 = \frac{1}{3} \text{tr} \hat{\boldsymbol{E}}^n$$

inelastic strain rate (Argon, 1973)

 $\dot{\gamma}^p = \dot{\gamma}_0^p \exp\left[-\frac{As}{T}\left(1 - \left(\frac{|\overline{\Sigma}'|}{s}\right)^{\frac{5}{6}}\right]\right]$

effect of current inelastic deformation and initial network deformation

E(T)

A(T)

lg

model extension beyond glass transition

intermolecular resistance: temperature dependent stiffness and activation energy (Dupaix & Boyce, 2007)

network resistance: density of entanglements n(T)

reasonable agreement of stress-free deformation after heating above glass transition temperature

Conclusions & Outlook

- thermo-mechanical model for large strain deformation of amorphous thermoplastics considering initial network stretch from manufacturing process
- calibrated from experiments over a wide range of temperatures
- reasonable esimate of stress-free deformation during heating

future work:

- estimation and mapping of molecular stretch and orientation from mold filling simulations
- improvement of temperature dependent network model
- application: forming simulations including manufacturing influence

