Institut für Mechanik Numerische Untersuchungen zum temperaturabhängigen Deformationsverhalten thermoplastischer Kunststoffe Diplomarbeit cand. ing. Susanne Müller

Motivation

- Molekülverstreckung in vordeformierten amorphen thermoplastischen Kunststoffen bei Raumtemperatur "eingefroren"
- führt bei anschließender Erwärmung zu Formerholung und anisotropem Schrumpf
- Simulation thermomechanischer Be- und Entlastungszyklen mit Boyce-Materialmodell und FE-Programm ABAQUS

Molekularer Aufbau amorpher Thermoplaste

- Netzwerk verschlaufter Makromoleküle
- mittlere Anzahl N von Kettengliedern zwischen Verschlaufungspunkten (-)
- maximale Grenzstreckung $\lambda_{max} = \sqrt{N}$
- zwei Widerstände gegen plastisches Fließen:
 - energetischer Widerstand gegen Kettensegmentrotation
 - entropischer Widerstand gegen Kettenverstreckung
 - (\rightarrow kinematische Verfestigung)

Deformationsverhalten amorpher Thermoplaste

- spritzgegossene Platten zeigen bei Erwärmung (freie Deformation) anisotropen Schrumpf aufgrund Kontraktion verstreckter Molekülketten (innere Rückspannung)
- numerische Simulation unter Berücksichtigung des temperaturabhängigen Verfestigungsverhaltens

- simulierter Anstieg der Rückspannung bei Abkühlung widerspricht Wiederaufbau Verschlaufungsnetzwerk in lokal entspannter Konfiguration
- kann durch Ansatz von Raha & Bowden nicht beschrieben werden

Verlauf der Spannung und Rückspannung

Ergebnisse – Inhomogene Deformation

Druckbelastung einer quadratischen Probe mit Imperfektion (EVZ):

	Step 1	Step 2	Step 3	Step 4
	$0 \le t \le 500 sec$	$\begin{array}{c} 500 sec \leq t \leq \\ 1500 sec \end{array}$	$\begin{array}{c} 1500 sec \leq t \leq \\ 2500 sec \end{array}$	$t \geq 2500 sec$
Temperatur	20° <i>C</i>	$20^{\circ}C$	homogene Erwärmung: $20^{\circ}C \rightarrow 120^{\circ}C$	120°C
mechanische Belastung	Stauchung mit $\dot{\epsilon} = 3.10^{-4} sec^{-1}$	globale Entlastung	äußere Belastung = 0	äußere Belastung = 0

- je größer Rückspannung desto schneller verläuft Rückdeformation
- bei höherer Temperatur wird undeformierter Ausgangszustand schneller wieder erreicht

Zusammenfassung und Ausblick

- komplexes thermo-mechanisches Verhalten thermoplastischer Kunststoffe konnte in den Simulationen abgebildet werden
- aufgrund der eingebrachten Orientierung liegen im Material innere Spannungen (Rückspannung) vor, die je nach Temperaturniveau wirksam werden
- Ansatz von Raha & Bowden muss erweitert werden

- Temperaturabhängigkeit der Fließgrenze
- temperaturabhängiges Verfestigungsverhalten

Materialmodell (Boyce et al., 1988)

- Elastizitätsgesetz $\stackrel{\circ}{\sigma} = E(D-D^p-D^{th})$
- Fließregel $D^p = \dot{\gamma^p} \frac{\sigma^D b^D}{|\sigma^D b^D|}$, therm. Dehnung $D^{th} = k \dot{\theta} I$
- plastische Dehnrate $\dot{\gamma}^p = \dot{\gamma}_0 \exp\left[-\frac{As}{\theta}(1 (\frac{\tau}{s})^{\frac{5}{6}})\right]$ mit $\tau = |\boldsymbol{\sigma}^D - \boldsymbol{b}^D|$ und $A, \dot{\gamma}_0 = konst.$
- athermischer Fließwiderstand $s(p, \gamma^p)$
- Rückspannung $b = \frac{1}{3}C^R \sqrt{N} \frac{1}{\lambda_c} \mathcal{L}^{-1}(\frac{\lambda_c}{\sqrt{N}}) B^p$ mit $B^p = F^p F^{pT}$ und $F^p \approx F$

Temperaturabhängige Verfestigung

• Verschlaufungsdichte $n(\theta)$ nimmt mit steigender Temperatur ab (Raha & Bowden, 1972)

 $n(\theta) = B - D \exp(\frac{-E_a}{R\theta})$ mit $B, D, E_a = konst.$

- wegen $n(\theta)N(\theta) = const.$ nimmt Anzahl N der Glieder pro Kette und damit Grenzstreckung λ_{max} mit steigender Temperatur zu
- thermoelastische Beziehung $b = f(B^p, N(\theta))$ für Rückspannung