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1 SUMMARY

Although gas or fluid supported membrane structures have a wide field of applications,
such as inflatable pontoons of pioneers, hover-craft cushions or even pressurized girders
or dams in the field of structural engineering, for fluid-structure interaction algorithms
it is still a challenge to manage problems with large structural deformations in combi-
nation with gas and/or fluid containments changing their inner state variables during
the deformation. In order to describe such interaction problems an analytical meshfree
description for the fluid/gas is chosen [1], [3]. This approach leads to a deformation
dependent loading and the particular advantage that concerning stability the influence
of internal gas and fluid filling can be directly computed [4].
The deployment of an inflatable dam from partial filling to complete filling with fluid
and gas followed by a hydrostatic loading demonstrates, how the simulation of struc-
tures with static gas and fluid loading resp. support can be efficiently performed for
large deformations without discretizing the fluid resp. the gas. A stability investigation
shows, how far such a dam has to be filled with fluid to avoid major stability problems.
Also multi-chamber systems are presented as a further alternative and the efficiency of
different solution schemes is discussed.

2 INTRODUCTION

In this contribution structures filled and loaded with fluid and/or gas undergoing large
deformations will be analysed with respect to their static stability and the discussion of
different solution schemes. As already shown in [5] and [6] the analytical formulation
of the fluid/gas terms in statics depends only on the surrounding structure and some
fundamental variables as e.g. the gas pressure. The derivations in [4] lead to a linearized
set of equations for fluid and/or gas filled chambers, which will be briefly discussed.
Further, the focus is on the terms, which are important for the specific solution schemes
and for the stability. The numerical examples cover both the buckling analyses of air
inflated flexible dams under hydrostatic loading and a comparison of iterative solvers and
direct solvers used for the computation.

3 FINITE ELEMENT FORMULATION OF GAS FILLED

STRUCTURES

As the derivation of the equations describing the state of equilibrium of a structure filled
with fluid and/or gas only in terms of variables of the structural geometry are already
given in [4], in this section only the basic approach for a system filled with gas will be
shown. All other cases, as e.g. the filling with compressible fluid, incompressible fluid and
incompressible fluid with additional gas loading, are treated in a similar fashion. The
principle of virtual work states that for a structure at equilibrium subjected to a virtual
displacement field the variation of the total potential energy δΠ equals the virtual work
of the external forces δWext,
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δΠ − δWext = 0. (1)

Considering a structure filled with gas, the energy consists of two parts: the internal
energy Πel of the elastic structure and the internal energy Πg stored in the gas. For the
virtual change of the energy then follows

δΠ = δΠel + δΠg. (2)

The equilibrium is considered in the current configuration Φ at time t. Applying the
Galerkin method to the surrounding structure results in disjunct elements and basis
functions d = N · u for the displacements u. Inserting (2) in (1) and linearizing the
equations leads for δΠg to terms corresponding to a pressure change ∆p and a change
∆n of the normal n on the surrounding structure,

δΠg(Φ + ∆u) = δΠg(Φ)
︸ ︷︷ ︸
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The residual term (a) only depends on the virtual displacement δu and thus it belongs
to the right-hand side vector fg. The second term (b) depends on δu and the change of
pressure ∆p and will appear as an additional column a to the assembled stiffness ma-
trix. The matrix Kg which results of the term (c) and depends on δu and the change
of displacement ∆u will be added to the stiffness matrix Kel of the system. The added
column, leading to a rank-one-update in a pure displacement formulation, is responsible
for a certain stabilization of the system. Altogether this approach leads, with the dis-
cretization of the structure and using basis functions for the displacements, to the first
row in the following system of equations,

(
Kel + Kg −a

−aT
−α

)(
∆d

∆p

)

=

(
fel + fg

0

)

. (4)

The second row follows from the isothermal constitutive equation for a quasistatic volume
change. This system can be solved with an iterative solver like the SQMR method or with
a direct solver. If the system consists of more than one chamber, the assembled matrix
in (4) features further rank updates. The choice of the fastest solution scheme depends
on the structure of this matrix. Also the challenge how to handle the very flexible state
- almost kinematic - at the beginning of the filling process numerically will be discussed.

4 NUMERICAL EXAMPLES

An example for structures filled with gas and undergoing large deformations are inflatable
dams [2]. They consist of a rubber coated tube with composite layers which is fixed to
the floor. The hydrostatic loading can be head water and/or bottom water (Figure
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1). The focus is here on the filling process and head water loading which causes large
deformations and raises the problem of structural stability.

ho

hu

head water

bottom water

deflector

Figure 1: Layout and load of an inflatable dam

For the filling process the uncoiled flexible tube is subjected to an increasing internal
gas pressure, inflating the membrane without any hydrostatic loading. In a further step
the head water level is steadily increased until it reaches the weir crest. This simulates
a rubber dam with hydrostatic loading and without overflow.

Figure 2: Initial configuration, filling process, hydrostatic load simulated by finite ele-
ments

As air filled rubber dams are prone to instability in case of high head water leading to
buckling and to a localised overflow, they can be stabilized with an additional fluid filling.
How far is subject of the presented investigation.

Figure 3: Buckling due to overflow
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