4. Aufgabe:

Die beiden skizzierten Stäbe werden zunächst durch ein entlang ihrer lokalen Koordinatenachsen ξ_1 und ξ_2 definiertes Temperaturfeld belastet:

$$\Delta T(\xi_i) = \Delta T_0 \left(1 + 4 \frac{\xi_i^2}{L^2} \right), \quad i = 1, 2$$

a) Bestimmen Sie die Verschiebung u_T des Gelenkes G in Folge der Temperaturänderung ΔT.

b) Zusätzlich zu der Temperaturänderung wird nun noch eine vertikale Einzelkraft F am Gelenk G aufgebracht. Bestimmen Sie die Kraft F, für die die Gesamtverschiebung $u = u_T + u_F$ des Gelenkes G gleich Null ist.

Gegeben: E, A, L, α_T, ΔT_0

Hinweis: Alle auftretenden Verschiebungen können als klein angenommen werden.
Aufgabe 4

a) Längenänderung der Stäbe infolge der Temperaturänderung $\Delta T(\xi_i)$:

\[
\frac{du}{d\xi_i} = \alpha_T \Delta T(\xi_i)
\]

\[
u(\xi_i) = \int_{\xi_i}^{\xi_i + \Delta T_0} \left(1 + 4 \frac{\xi_i^2}{L^2} \right) d\xi_i = \alpha_T \Delta T_0 \left(\xi_i + \frac{4}{3} \frac{\xi_i^3}{L^2} + c \right)
\]

Aufgrund der unverschieblichen Festlager gilt die Randbedingung

\[u(\xi_i = 0) = 0 \iff \alpha_T \Delta T_0 (0 + 0 + c) = 0 \iff c = 0\]

Die Längenänderungen an den Stabenden betragen

\[\Delta l_T = \Delta l_1 = \Delta l_2 = u(\xi_i = L) = \alpha_T \cdot \Delta T_0 \cdot \left(L + \frac{4}{3} \frac{L^3}{L^2} \right) = \alpha_T \cdot \Delta T_0 \cdot \frac{7}{3} L\]

Stabverlängerungen Δl_1 und Δl_2 in einen Verschiebungsplan. Der Schnittpunkt der Lote auf den Stabverlängerungen liefert die neue Lage G'.

\[\Rightarrow u_T = \frac{\Delta l_T}{\cos 30^\circ}\]

b) Längenänderung der Stäbe infolge der Last F:

\[\sum_{V} (S_2 - S_1) \sin 30^\circ = 0 \iff S_1 = S_2 = S\]

\[\sum_{F} F + (S_1 + S_2) \cos 30^\circ = 0 \iff S = \frac{-F}{2 \cdot \cos 30^\circ}\]
Stabverlängerungen infolge der konstanten Stabkraft

\[\Delta l_F = \frac{SL}{EA} = \frac{-F}{2 \cdot \cos 30^\circ} \frac{L}{EA} \]

Stabverkürzungen \(\Delta l_F \) im Verschiebungsplan. Der Schnittpunkt der Lote auf den Stabverlängerungen liefert \(u_F \).

\[\Rightarrow u_F = \frac{\Delta l_F}{\cos 30^\circ} \]

Gesamtverschiebung \(u = u_T + u_F \neq 0 \)

\[u_T + u_F = \frac{\Delta l_T}{\cos 30^\circ} + \frac{\Delta l_F}{\cos 30^\circ} = \frac{1}{\cos 30^\circ} \left(\alpha_T \cdot \Delta T_0 \cdot \frac{7}{3} L - \frac{F}{2 \cdot \cos 30^\circ} \frac{L}{EA} \right) \neq 0 \]

\[\Leftrightarrow F = 2 \cdot \frac{\sqrt{3}}{2} \cdot EA \cdot \alpha_T \cdot \Delta T_0 \cdot \frac{7}{3} \]

\[\Leftrightarrow F = \frac{7\sqrt{3}}{9} EA \alpha_T \Delta T_0 \]