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Continuum immersed strategies are widely used these days for the computational simulation of Fluid–
Structure Interaction problems. The principal characteristic of such immersed techniques is the represen-
tation of the immersed solid via a momentum forcing source in the Navier–Stokes equations. In this
paper, the Immersed Finite Element Method (IFEM), introduced by Zhang et al. (2004) [41] for the anal-
ysis of deformable solids immersed in an incompressible Newtonian viscous fluid, is further enhanced by
means of three new improvements. A first update deals with the modification of the conservation of mass
equation in the background fluid in order to account for non-isochoric deformations within the solid
phase. A second update deals with the incompressibility constraint for the solid phase in the case of iso-
choric deformations, where an enhanced evaluation of the deformation gradient tensor is introduced in a
multifield Hu-Washizu variational sense in order to overcome locking effects. The third update is
focussed on the improvement of the robustness of the overall scheme, by introducing an implicit one-
step time integration scheme with enhanced stability properties, in conjunction with a consistent New-
ton–Raphson linearisation strategy for optimal quadratic convergence. The resulting monolithic method-
ology is thoroughly studied for a range of Lagrangian and NURBS based shape finite element functions for
a series of numerical examples, with the purpose of studying the effect of the spatial semi-discretisation
in the solution. Comparisons are also established with the newly developed Immersed Structural Poten-
tial Method (ISPM) by Gil et al. (2010) [7] for benchmarking and assessment of the quality of the new
formulation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The computational analysis of Fluid–Structure Interaction (FSI)
phenomena is widely used these days for a wealth of industrial
and physical applications. In particular, the field of biomechanics
has observed a surge over the last decade in the application of
these computational techniques for the modelling of biological tis-
sues (i.e. heart valves) interacting with biological fluids (i.e. blood).
Some of these problems are highly challenging, requiring the mod-
elling of highly deformable solids immersed within a surrounding
incompressible Newtonian viscous fluid. In this case, a stable and
robust computational algorithm becomes essential for a successful
simulation.

Partitioned boundary-fitted methods are a well established
strategy for the modelling of FSI effects or more general coupled
multifield problems. These methods are usually based upon an
Arbitrary Lagrangian Eulerian approach [5]. Monolithic strongly
coupled Dirichlet–Neumann schemes as proposed in [33] or
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partitioned staggered alternatives as in [38], require the spatial
discretisation of the interface to transfer information between
the interacting phases. Sophisticated discretisation schemes, like
the dual mortar method recently introduced in [18], have been de-
signed to optimise the transfer of momentum between the differ-
ent phases. The modelling of the interface can also be carried out
by means of the eXtended Finite Element Method (XFEM) [6].
One disadvantage in the above boundary-fitted approaches stems
from the necessity to resort to moving/remeshing algorithms to
update the referential fluid mesh, which can turn to be computa-
tionally expensive in terms of the overall algorithm [21].

An alternative group of FSI methodologies are based upon the
Immersed Boundary Method (IBM) pioneered by Peskin [25–27].
This method relies on the representation of the solid–fluid inter-
face as a momentum forcing source in the Navier–Stokes equations
governing the behaviour of the fluid. The force term was initially
included to represent the effect of an immersed thin solid structure
(i.e. heart valve) modelled as an assemblage of curvilinear Lagrang-
ian fibre-like elements in an incompressible viscous fluid (i.e. blood
stream). This approach was later improved and extended in the
form of the Immersed Finite Element Method (IFEM) by Zhang
and Liu [41,36,35], to suitably analyse continuum immersed solids
(for compressible fluids see Wang et al. [37]). In this approach, the
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immersed solid is discretised in space following a Finite Element
approach, requiring the generation of a computational mesh. Re-
cently, in Gil et al. [7,8], the authors introduced the definition of
a deviatoric strain energy functional to characterise the behaviour
of the immersed structure, where its spatial gradient defines the
FSI force field, resulting in the so-called Immersed Structural Po-
tential Method (ISPM). In this case, the solid is modelled as a col-
lection of integration points (i.e. quadrature points), removing
the need for an initial computational mesh. All in all, these im-
mersed methodologies have been proven to be computationally
very efficient and competitive with numerous applications in bio-
medical FSI problems [19].

In continuum immersed strategies, the background fluid is
modelled using a standard Eulerian description, whilst the im-
mersed solid is described in a Lagrangian manner. The introduction
of an Euler–Lagrange mapping operator, which enables the transfer
of information between both descriptions [31], is crucial to the
success of these approaches. In this sense, the discretisation ap-
proach employed for the fluid, solid and the Euler–Lagrange map-
ping will be demonstrated to have clear effects in the numerical
solution.

In this paper, the incompressible Newtonian fluid is resolved
following a standard Finite Element semi-discretisation method
[5] with isoparametric quadrilateral elements. The effect of both
classical Lagrange and more recent NURBS based shape functions
[15,16,9,22] will be explored. Regarding the former, a Q2Q1
Taylor–Hood element and a lower order Q1Q1 element will be
implemented and compared. It is well known that since the Q1Q1
element does not satisfy the LBB condition (see [5,14,32,34]), the
Streamline Upwind Petrov Galerkin (SUPG) method must be
employed for stabilisation.

The immersed solid is modelled following both the IFEM and
ISPM approaches in order to further assess their feasibility and
range of application. For the modelling of the solid, both compress-
ible and nearly incompressible scenarios will be studied. To ac-
count for compressible immersed solids, the conservation of
mass equation in the background fluid domain will be suitably
modified to take into consideration the presence of a volumetric
deformation. In the incompressibility limit, the IFEM approach,
based on a Finite Element discretisation of the solid phase, suffers
from well reported locking effects [1]. A solution to this deficiency,
based on the use of enhanced elements (see [30,28,29]), will be
implemented and tested.

For the time-integration of the resulting semi-discrete system, a
monolithic, consistent and fully implicit time integration scheme
will be employed for both the fluid and the immersed solid. Struc-
ture preserving integrators are well known within the context of
non-linear elastodynamics (see [23,24,10]). These algorithms can
be straightforwardly applied without any further modification,
resulting in highly stable schemes enabling the use of very large
time steps with optimum dissipation/dispersion properties.

This paper is broken down into the following sections. In Sec-
tion 2, the governing partial differential equations (strong form)
of the problem are presented for both the fluid and solid phases
and are further elaborated into a variational format (weak form)
for subsequent numerical analysis. An important aspect relating
to the modification of the conservation of mass equation in the
background fluid field is presented with the purpose of accounting
for volumetric deformations in the solid phase. Section 3 focusses
on various possible finite element based spatial discretisation
strategies (i.e. Lagrangian or NURBS based) used to resolve the
underlying equations. In this section, the Euler–Lagrange discrete
mapping operator is described in depth, highlighting the existing
differences between the various IFEM formulations and the ISPM
approach. In Section 4, the time discretisation strategy is presented
for both the fluid, solid and the Euler–Lagrange operator. Section 5
displays an extensive range of numerical examples in order to
demonstrate the flexibility and robustness of the formulation,
drawing key comparisons between the various competing ap-
proaches. Finally, in Section 6, some concluding remarks will be
drawn.

2. Problem formulation

The objective of this section is to provide a brief outline of the
fundamental equations governing the problem under consider-
ation. Subsections one and two summarise the standard formula-
tion of the Newtonian viscous fluid system described by the
incompressible Navier–Stokes equations. We refer to the seminal
works by Donea and Huerta [5] and Zienkiewicz et al. [42] for a de-
tailed analysis of this topic. Subsections three and four focus on the
mathematical description of the immersed deformable solid phase
following the pioneering work of Peskin [25,27] and the subse-
quent extension to a continuum medium introduced by Zhang
et al. [41].
2.1. Fluid system – strong formulation

We consider a single bounded domain X � Rd; d 2 ½2;3�. The
material position of a particle is labelled by X whereas the actual
position is labelled by x. Both positions are linked during the time
interval of interest t 2 I ¼ ½0; T� by the deformation mapping
u : X� ½0; T� ! Rd such that xðtÞ ¼ u X; tð Þ. As usual, we write the
fluid system in terms of an Eulerian description using the inverse
mapping X ¼ u�1ðxðtÞ; tÞ. For the time differential of a physical
quantity f ðxðtÞ; tÞ, it follows immediately that

_f ¼ @f
@t
þ v � rxf ; ð1Þ

where vðxðtÞ; tÞ ¼ @u=@t denotes the velocity at a specific point.
Without loss of generality we restrict ourselves to the incompress-
ible case and obtain for the conservation of mass equation

rx � v ¼
_J
J
� 0; ð2Þ

where J ¼ detðFÞ and F : X� ½0; T� ! Rd�d; F ¼ Du denotes the
deformation gradient tensor. For a Newtonian viscous fluid the Cau-
chy stress tensor r : X� ½0; T� ! Rd�d is defined by

r ¼ �pI þ krx � v þ l rxv þrxvT
� �

; ð3Þ

where l denotes the dynamic viscosity and k the second coefficient
of viscosity. Here, the pressure p : X� ½0; T� ! R is a sufficiently
smooth function and can be regarded as a Lagrange multiplier intro-
duced to enforce condition (2). Note that for the case of an incom-
pressible fluid the second term on the right hand side vanishes. The
non-conservative Eulerian form of the balance of linear momentum
reads,

q _v ¼ rx � rþ qg; ð4Þ

where q denotes the density and g a prescribed body force per unit
of mass. Finally, suitable boundary conditions need to be introduced
on the boundary C of the domain X as follows,

v ¼ u; on Cu � ½0; T�;
r � n ¼ h; on Ch � ½0; T�:

ð5Þ

Here, (5)1 and (5)2 denote the Dirichlet and Neumann boundary
conditions, respectively, with Cu [ Ch ¼ C; Cu \ Ch ¼ ; and n the
outward unit normal vector.
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2.2. Fluid system – weak formulation

Following a standard variational formulation, we recast the
above system of partial differential equations (strong form) in its
variational counterpart (weak form). Hence, suitable functional
spaces of test functions for both the velocity and pressure fields
are introduced as follows,

Vv ¼: fdv 2 H1ðXÞjdv ¼ 0 on Cug;
Vp ¼: fdp 2 L2ðXÞg;

ð6Þ

where the Sobolev functional space H1 contains the set of square
integrable functions with square integrable spatial gradient. Setting
the inner product in X and its boundary @X in the usual fashion,Z

X
ð�Þ � ð�Þdv ¼: h�; �i and

Z
@X
ð�Þ � ð�Þda ¼: h�; �iC ð7Þ

we can rewrite the balance of linear momentum as follows,

hqð _v � gÞ; dvi þ hr;rxðdvÞi � hh; dviCh ¼ 0 ð8Þ

supplemented by the kinematic constraint

hrx � v ; dpi ¼ 0: ð9Þ

Both Eqs. (8) and (9) have to hold for all dv 2 Vv and dp 2 Vp for all
times t 2 I ¼ ½0; T�.

2.3. Immersed solid system – strong formulation

Let us consider a deformable solid fully immersed within the
surrounding incompressible viscous fluid. For the calculation of
the Fluid–Structure Interaction (FSI) effect, an immersed contin-
uum numerical strategy will be followed, where the deformable
solid phase is modelled as embedded into the background fluid
phase (see [20]). The resulting FSI forces are formulated in terms
of a volumetric force field F : Xs

t � ½0; T� ! Rd which emanates
from the interaction of the background fluid system defined by
the domain X with the immersed solid system defined by the do-
main Xs

t at time t. In Gil et al. [7,8], the authors model the solid as a
Helmholtz’s free energy functional whose spatial gradient defines
the FSI force field. This force vector field F can be introduced with
no difficulty within the conservation of linear momentum of the
background fluid phase in Eq. (4) as follows,1

qf _v ¼ rx � rf þ qf g þF : ð10Þ

The volumetric force field F of the immersed solid reads,

F ¼
0 in XnXs

t ;

ðqf � qsÞð _v � gÞ þ r � ðrs � rf Þ in Xs
t :

(
ð11Þ

In addition, the conservation of mass Eq. (2) is modified allowing
for the immersed solid to possibly experience non-isochoric
deformations within the surrounding incompressible fluid, result-
ing in

rx � v ¼ F p; ð12Þ

where the scalar field F p : Xs
t � ½0; T� ! R is defined as,

F p ¼
0 in XnXs

t ;
_J
J in Xs

t :

(
ð13Þ

Note that we do not need to introduce additional pressure un-
knowns for the solid, if it is assumed to be incompressible. Within
the context of Green elastic materials [13], we next postulate the
existence of a hyperelastic constitutive law for the calculation of
1 Contributions to the solid system are marked with ð�Þs , whereas contributions to
the fluid system are marked with ð�Þf .
the solid stress field by introducing a scalar valued stored strain en-
ergy functional WðCÞ, where C ¼ FT F denotes the right Cauchy–
Green tensor. In general, additional internal thermodynamic vari-
ables can also be used to further characterise the constitutive law
of the immersed solid (i.e. including plastic or viscoelastic behav-
iour). Moreover, in the case of nearly incompressible materials,
sophisticated mixed formulations based upon the use of enhanced
modes can also be utilised (see Appendix A for further details).
The actual stress field of the immersed solid can be obtained via a
push forward operation of the purely material derivative of the
stored strain energy functional as,

rs ¼ 2
J

F
@WðCÞ
@C

FT : ð14Þ

For numerical convenience, it is customary to employ a Lagrangian
mapping for the description of the immersed solid whilst the fluid
is modelled by means of an Eulerian mapping. The kinematic
information in terms of velocity and spatial position can easily be
measured in the Eulerian background fluid and must be suitably
linked to the solid phase in a compatible fashion (i.e. non-slip
condition). Computations within the solid phase require then the
definition of an Euler–Lagrange mapping IXs

t
for any given function

w of the solid system such that wðx; tÞ : Xs
t � ½0; T� is mapped to

IXs
t
ðwðX; tÞÞ : Xs

0 � ½0; T�. In the continuum this transfer mapping is
simply defined by the identity,

IXs
t
ðwðX; tÞÞ ¼ wðx X; tð Þ; tÞ ¼ wðx; tÞ: ð15Þ

However, the use of different spatial interpolation strategies for the
fluid and solid phases will require an appropriate transfer operator
that will be described below. Specifically, for the velocity field,

vðx; tÞ ¼ IXs
t
ðvðX; tÞÞ: ð16Þ

In order to complete the strong form for the solid phase, appropriate
Dirichlet boundary conditions can be defined as follows,

xðX; tÞ ¼ x0; on @Xs
D: ð17Þ

Since the immersed solid is surrounded by the fluid, additional
Neumann boundary conditions are not treated explicitly as the
interaction is already accounted for in the FSI force term F .

2.4. Immersed solid system – weak formulation

The variational formulation of the balance of linear momentum
follows the same arguments outlined in Section 2.2 and reads,

hqf ð _v � gÞ �F ; dvi þ hrf ;rxðdvÞi � hh; dviCh ¼ 0 ð18Þ

and for the conservation of mass,

hrx � v � F p; dpi ¼ 0: ð19Þ

Eqs. (18) and (19) summarise the weak form for the overall
problem (i.e. fluid–solid). It is convenient to split the above formu-
lae into fluid and solid phases. Introducing the Jacobian of the
deformation in the solid phase Js ¼ detðFsÞ, taking into account
the Euler–Lagrange mapping IXs

t
defined above and making use

of the notationZ
Xs

0

ð�Þ � ð�ÞdV ¼: h�; �is0 ð20Þ

the weak form expression (18) can be rewritten as,

hqf ð _v � gÞ; dvi þ hrf ;rxðdvÞi � hh; dviCh

� ðqf � qsÞ @

@t
IXs

t
ðvðX; tÞÞ � g

� �
; IXs

t
ðdvÞJs

� �s

0

� hrs � rf ;rxIXs
t
ðdvÞJsis0 ¼ 0: ð21Þ
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Similarly, the weak form expression (19) can be reformulated as,

hrx � v ; dpi � h_Js; IXs
t
ðdpÞis0 ¼ 0: ð22Þ

The internal virtual work within the solid phase defined in terms of
the conjugate pair frs;rxIXs

t
ðdvÞg can be reformulated by means of

the Piola transformation in terms of an alternative conjugate pair

fSs; ðFsÞTrXIXs
t
ðdvÞg as,

hrs;rxIXs
t
ðdvÞJsis0 ¼ hS

s; ðFsÞTrXIXs
t
ðdvÞis0; ð23Þ

where Ss ¼ 2 @WðCsÞ
@Cs is the so-called Second Piola–Kirchhoff stress

tensor and Cs ¼ ðFsÞT Fs is the right Cauchy–Green tensor particular-
ised for the solid phase. The evaluation of the fluid stress rf within
the solid phase follows immediately from the definition (3) in con-
junction with the incompressibility constraint as,2

rf ¼ �IXs
t
ðpÞI þ l rXIXs

t
ðvÞ þ ðrXIXs

t
ðvÞÞT

� 	
ðFsÞ�1: ð24Þ

It is worthwhile emphasising that the evaluation of the spatial gra-
dients rxIXs

t
ðvÞ and rxIXs

t
ðdvÞ, and the subsequent construction of

the deformation gradient Fs is one of the most challenging pro-
cesses in any computational immersed methodology. From the spa-
tial discretisation point of view, various approaches have been
developed, using either local elementwise shape functions such as
in the Immersed Finite Element Method (IFEM) and its variants
[41,36,20,35] or kernel shape functions with larger compact support
such as in the Immersed Structural Potential Method (ISPM) [7,8].
This important aspect will be discussed in length in the following
sections.

3. Spatial discretisation

This section introduces spatial discretisation aspects for the
numerical solution of the variational weak form encompassed by
expressions (21) and (22). A Finite Element based approach will
be preferred to solve the underlying fluid physics in X using either
classical Lagrangian or more advanced NURBS based shape func-
tions. Depending on the selection of shape functions, the well-
known LBB condition [5] might be violated leading to spurious
numerical oscillations and possibly instability of the scheme. A
well established solution to this problem relies on the modification
of the test function space as defined in (6) by using stabilisation
techniques based upon an alternative Petrov–Galerkin weak for-
mulation (see [4,32,34]). In general, the domain X is subdivided
into a finite set of non-overlapping elements e 2 E such that,

Xh ¼
[

e

Xe; 8e 2 E ð25Þ

and all space fields included in the weak form are suitably discre-
tised. Notice that in order to complete the semi-discrete formula-
tion of the overall problem, the spatial discretisation of the Euler–
Lagrange mapping also needs to be carried out.

3.1. Lagrangian based discretisation of the fluid

Without prejudice to the generality of the formulation, a Q2Q1
Lagrangian finite element discretisation is chosen as follows,

vh ¼
X
A2x

NAvA; dvh ¼
X
A2x

NAdvA;

ph ¼
X
B2 �x

MBpB; dph ¼
X
B2 �x

MBdpB;
ð26Þ
2 Notice that the stress contribution in Xs
t due the fluid rf is several orders of

magnitude smaller than the stress contribution due to the immersed solid rs , hence it
is usually neglected [41,20].
where NAðxÞ : Xh ! R are quadratic shape functions associated with
nodes A 2 x ¼ f1; . . . ;ng and MBðxÞ : Xh ! R are linear shape func-
tions associated with nodes B 2 �x ¼ f1; . . . ;mg. This element is
known to satisfy the LBB condition and provides optimal quadratic
convergence of the velocity field (see [5]). The semi-discrete bal-
ance of momentum reads,

hqf ð _vh � ghÞ; dvhi þ hrf ðvh; phÞ;rxðdvhÞi � hhh
; dvhiCh ¼ 0; ð27Þ

whereas the incompressibility constraint reads,

hrx � vh; dphi ¼ 0: ð28Þ

If necessary (i.e. for low order elements in conjunction with high
Reynolds numbers), a stabilisation technique for the underlying
Galerkin approach can be applied (cf. [32]) using extended test
function spaces as,

V
~v ¼: fd~v 2 H1ðXÞjd~v ¼ dv þ cSUPGv � rxðdvÞ þ cPSPGrxðdpÞg;

V
~p ¼: fd~p 2 L2ðXÞjd~p ¼ dpþ cLSICrx � ðdvÞg;

ð29Þ

where cSUPG; cPSPG and cLSIC are precalculated stabilisation parame-
ters (see [34] for a detailed definition of the stabilisation parame-
ters). The modified semi-discrete balance of linear momentum
reads,

hqf ð _vh � ghÞ; dvhi þ hrf ðvh; phÞ;rxðdvhÞi � hhh
; dvhiCh

þ
X

e

cSUPGhRv ; ðvh � rxÞdvhi þ
X

e

cLSIChRp;rx � dvhi ¼ 0 ð30Þ

and the kinematic constraint

hrx � vh; dphi þ
X

e

cPSPGhRv ;rxdphi ¼ 0: ð31Þ

Here, Rv and Rp denote the residuals of the original momentum
and kinematic constraint equations, respectively.

3.2. NURBS based discretisation of the fluid

The consideration of more sophisticated NURBS based shape
functions for the spatial semi-discretisation of the problem yields,

vh ¼
X
A2x

RAvA; dvh ¼
X
A2x

RAdvA;

ph ¼
X
B2 �x

RBpB; dph ¼
X
B2 �x

RBdpB;
ð32Þ

where (cf. [12,15])

RA;ðiÞ ¼ Ri;j;k
p;q;rðnÞ ¼

Ni;pðnÞMj;qðgÞLk;rðfÞwi;j;kPn
î¼1

Pm
ĵ¼1

Pl
k̂¼1N î;pðnÞM ĵ;qðgÞLk̂;rðfÞwî;̂j;̂k

: ð33Þ

Here, p; q; r denote the order of the non-rational B-Spline shape
functions N; M and L, recursively defined as follows,

Ni;p ¼
n� ni

niþp � ni

Ni;p�iðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1
Niþ1;pþ1ðnÞ ð34Þ

starting with

Ni;0ðnÞ ¼
1 if ni 6 n < niþ1;

0 otherwise:



ð35Þ

The above system has been defined for the three dimensional case;
the two dimensional case follows suit. The order of the quadratic
and linear parts has to be adjusted within the recursive definition
of the NURBS basis. It can be observed that the number of con-
straints is, in general, higher compared to Lagrangian shape func-
tions, hence the LBB condition is violated, requiring stabilisation.



C. Hesch et al. / Comput. Methods Appl. Mech. Engrg. 247–248 (2012) 51–64 55
3.3. Discrete Euler–Lagrange mapping

IFEM, Lagrangian mesh. A common approach is to numerically
model the immersed solid following a finite element approach (Im-
mersed Finite Element Method (IFEM) [41]). Additional shape
functions are introduced to describe the immersed solid (cf. [20])
as follows,

IXs
t
ðvhÞ ¼

Xnnode

C¼1

NC �vC ; IXs
t
ðphÞ ¼

Xnnode

C¼1

NC �pC : ð36Þ

Here, NCðXÞ : Xs;h
0 ! R are the corresponding shape functions and

�vC and �pC denote the nodal values at the current position of the so-
lid, calculated from the background Eulerian fluid grid as follows,

�vC ¼
X
A2x

NAðxðXC ; tÞÞvA; �pC ¼
X
B2 �x

NBðxðXC ; tÞÞpB: ð37Þ

Combining formulae (36) and (37) results in the definition of the
spatial interpolation operator for the transfer of information be-
tween the Eulerian and the Lagrangian meshes as follows,

IXs
t
ðNAðX; tÞÞ ¼

Xnnode

C¼1

NAðxðXC ; tÞÞNCðXÞ; ð38Þ

which renders a linear operator. The Euler–Lagrange mapping is
shown in Fig. 1 for a one dimensional system and linear shape func-
tions. The mapping for the single immersed element reads,

IXs
t
ðNAðXðnÞ; tÞÞ ¼ NAðxðX1; tÞÞN1ðXðnÞÞ þ NAðxðX2; tÞÞN2ðXðnÞÞ:

ð39Þ

It is crucial to realise that the finite element mesh generation of the
immersed solid cannot be independent of the finite element mesh
generation of the surrounding fluid phase. Indeed, a coarse solid
mesh, as displayed for instance in Fig. 2, will not yield optimal re-
sults, since the background fluid shape function N3 is not affected
by the presence of the immersed solid. In other words, the numer-
ical integration of the FSI force field F will not be accurately com-
puted. From the physical point of view, this would mean that the
presence of the immersed solid is not properly accounted for by
Fig. 1. One dimensional Eu

Fig. 2. Effects of a co
the surrounding fluid, leading to unphysical breaking of the solid
phase. On the other hand, an unnecessarily fine solid mesh would
result in an exceedingly high condition number of the resulting tan-
gent stiffness matrix of the system (after linearisation) leading to
numerical difficulties.

IFEM, NURBS mesh. The Euler–Lagrange mapping can be rede-
fined for the application of a NURBS based finite element fluid
description in a straightforward manner. As presented previously,
the Lagrangian shape functions are replaced with NURBS shape
functions to calculate the nodal values,

�vC ¼
X
A2x

RAðxðXC ; tÞÞvA; �pC ¼
X
B2 �x

RBðxðXC ; tÞÞpB ð40Þ

leading to the interpolation-spreading operator,

IXs
t
ðRAðX; tÞÞ ¼

Xnnode

C¼1

RAðxðXC ; tÞÞNCðXÞ; ð41Þ

which is also a linear operator.
ISPM. The last approach described in this section is the Im-

mersed Structural Potential Method (ISPM) introduced in Gil
et al. [7]. The solid is represented as a Helmholtz’s free energy den-
sity functional immersed within the surrounding fluid phase.
Moreover, the solid domain is modelled in a Lagrangian manner
as a collection of integration points ap immersed within the fluid,
moving from an initial position Xap to the spatial position xap

through the deformation defined by the motion of the surrounding
continuum (i.e. non-slip condition).

Notice that the integration points’ parameters (i.e. spatial loca-
tion xap and associated tributary weight Wap ) can be directly ob-
tained on the solid domain, without the need for an initial
tessellation (in the sense of a Finite Element approach). Alterna-
tively, Xap and Wap can be obtained directly from the use of optimal
high order Gaussian quadrature rules. As shown in [8], the latter
approach can ensure accuracy of quadrature of the immersed po-
tential and improve the speed of computation.

Within this approach, global shape functions uðxÞ are estab-
lished on the Eulerian fluid grid to first interpolate the kinematic
information directly to the solid integration points ap and second,
ler–Lagrange mapping.

arse solid mesh.
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spread the calculated forces back to the balance of linear momen-
tum of the fluid. The construction of the continuous functions uðxÞ
starts with the approximation of the Dirac delta distribution
through a tensorised discrete approximation,

uðxÞ ¼
Yd

i¼1

dDxi
ðxiÞ; d 2 ½2;3�; ð42Þ

where Dxi is related to the size of the background fluid mesh and

dDxi
¼ 1

Dxi
/

xi

Dxi

� �
ð43Þ

is defined in terms of a smoothed representation / of the one
dimensional Dirac delta distribution, to obtain

vap ¼
X

A

uAðxap ÞvA; uAðxap Þ ¼ uðxap � xAÞ ð44Þ

for the interpolation of the velocity field. For details on the con-
struction of sophisticated kernel functions, see Gil et al. [8]. More
generally, we can write for the Euler–Lagrange mapping

IXs
t
ðuAðX; tÞÞ ¼ uAðxðX; tÞÞ; ð45Þ

which coincides with the continuum map. A key aspect of this
methodology is the direct integration of the deformable solid stres-
ses from solid integration points to fluid nodes, similar to the Mate-
rial Point Method (MPM) [40], reducing the number of interpolation
operations (compare formula (45) with formulae (38) and (41)).

3.4. Calculation of the deformation gradient tensor

The evaluation of the deformation gradient tensor in the IFEM
methodology at the corresponding Gauss points requires the time
integration of the velocity field at each node C of the immersed so-
lid grid to recover the actual position of the node as,

�xC � �xCð�vCÞ ¼
Z t

t0

�vðsÞds: ð46Þ

Taking Eq. (36) into account, we can express the deformation gradi-
ent tensor in a classical Finite Element sense as,

F ¼
Xnnode

C¼1

�xC 	rX
�NC : ð47Þ

For the ISPM methodology, it is necessary to integrate in time the
deformation gradient tensor at any integration point ap directly
using the spatial velocity gradient tensor l defined as,

l ¼
X

A

vA 	rxuAðxÞ ð48Þ

and the kinematic relation

_F ¼ lF: ð49Þ

For further details on an explicit representation of useful time inte-
gration schemes, refer to Gil et al. [7]. In contrast to the IFEM ap-
proach (see Eq. (47)), the evaluation of the deformation gradient
tensor F in the ISPM manner (Eqs. (48) and (49)) prevents the
occurrence of locking effects in the incompressibility limit. This will
be shown at a later stage in this paper by means of a numerical
example. Alternatively, an enhanced mode can be added into for-
mula (47) in a Hu-Washizu multifield variational sense [1], to over-
come the inherent difficulties of the IFEM approach (see Appendix A
for further details).

In addition, within a full variational formulation, it is also pos-
sible to introduce the weak form of the mapping (16) as,

@xhðX; tÞ
@t

� IXs ðvhðX; tÞÞ
� �

; dxh
� �s

0
¼ 0 ð50Þ
if the solution and test functional spaces

xh ¼
Xnnode

C¼1

NCxC ; dxh ¼
Xnnode

C¼1

NCdxC ð51Þ

of the immersed solid are explicitly defined (cf. [20]). In contrast to
the approaches described above where the number of unknowns in
the system coincides with those of the fluid phase, the final system
of equations is now enlarged by the number of unknowns of the im-
mersed solid.

4. Discretisation in time

The previously introduced semi-discrete problem can now be
discretised in time in order to obtain a full discrete set of non-linear
algebraic equations which can be solved (i.e. via a Newton–Raphson
iteration scheme). Consider a time interval I ¼ ½0; T� which can be
split into a sequence of subintervals n! nþ 1 of size Dt ¼
tnþ1 � tn, where ð�Þnþ1 and ð�Þn denote values of the corresponding
function at the specified time and assume that all values at time n
are known.

4.1. Fluid

To approximate the state ðvh
nþ1; p

h
nþ1Þ we consider a one step

method for the evaluation of the weak form in (30) and (31) as
follows,

q
vh

nþ1 � vh
n

Dt
� ðvh

nþ1=2 � rxÞvh
nþ1=2 � gh

nþ1=2

� �
; dvh

� �
þ hrðvh

nþ1=2;p
h
nþ1Þ;rxðdvhÞi � hhh

nþ1=2; dv
hiCh ¼ 0;

hrx � vh
nþ1; dphi ¼ 0;

ð52Þ

where ð�Þnþ1=2 ¼ 1
2 ðð�Þnþ1 þ ð�ÞnÞ denotes the mid-point configura-

tion. Note that we evaluate the constraints at the end-point config-
uration and assume that the corresponding Lagrange multipliers
ph

nþ1 are constant within each time step. If the system requires the
use of stabilisation techniques, it yields

q
vh

nþ1 � vh
n

Dt
� ðvh

nþ1=2 � rxÞvh
nþ1=2 � gh

nþ1=2

� �
; dvh

� �
þ hrðvh

nþ1=2;p
h
nþ1Þ;rxðdvhÞi � hhh

nþ1=2; dv
hiCh

þ
X

e

cSUPGhRvðvh
nþ1=2; p

h
nþ1Þ; ðvh

nþ1=2 � rxÞdvhi

þ
X

e

cLSIChRpðvh
nþ1Þ;rx � dvhi ¼ 0;

hrx � vh
nþ1=2; dphi

þ
X

e

cPSPGhRvðvh
nþ1=2; p

h
nþ1Þ;rxdphi ¼ 0:

ð53Þ

This mid-point type rule (see [3]) is of second order accuracy and
robust for large time step sizes, as will be demonstrated numeri-
cally in a later section of this paper.

4.2. Immersed solid

The additional immersed solid contributions defined in (21) and
(22) for the solid domain need also to be discretised in time. The
contribution to the linear momentum balance equation gives,

F hðvn;vnþ1;pnþ1Þ

¼ � ðqf
0 � qs

0Þ
IXs ðvh

nþ1Þ � IXs
t
ðvh

nÞ
Dt

� gh
nþ1=2

 !
; IXs

t
ðd~vhÞ

* +s

0

� h~Ss; ðFsðIXs
t
ðvh

nþ1=2ÞÞÞ
TrXIXs

t
ðd~vhÞis0

þ h�rf ðIXs
t
ðvh

nþ1=2Þ; IXs
t
ðph

nþ1ÞÞ;rxIXs
t
ðd~vhÞJsðIXs

t
ðvh

nþ1=2ÞÞi
s
0 ð54Þ
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and the additional contribution to the kinematic constraint
becomes,

F p;hðvn;vnþ1Þ ¼ �
JsðIXs

t
ðvh

nþ1ÞÞ � JsðIXs
t
ðvh

nÞÞ
Dt

 !
; IXs

t
ðd~phÞ

* +s

0

:

ð55Þ

The evaluation of the second Piola–Kirchhoff stress tensor ~Ss in (54)
is inspired by the development of energy–momentum schemes for
solid mechanics,

~Ss ¼ 2DWðCnþ1=2Þ

þ 2
WðCnþ1Þ �WðCnÞ � SsðCnþ1=2Þ : ðCnþ1 � CnÞ

kCnþ1 � Cnk2 ðCnþ1 � CnÞ;

ð56Þ

which provide enhanced stability for large time steps (see [2]). Spe-
cifically, for a St. Venant–Kirchhoff material the discrete gradient in
(56) is equal to the evaluation of the strain energy function at the
mid-point of the strains, i.e. ~Ss ¼ 2DWðCnþ1=2Þ. Furthermore, this ap-
proach also shows enhanced stability for Neo-Hookean materials as
presented in [10]. These two constitutive models will be employed
in the numerical examples presented at a later stage in this paper.

4.3. Euler–Lagrange mapping

The Euler–Lagrange mapping requires an algorithmic search
process to identify the local coordinates for the evaluation of the
shape functions (i.e. NAðxðXC ; tÞ). A similar process is also needed
in contact mechanics on the actual contact surface and hence,
can be applied with very few modifications to the problem at hand.
In particular, a local Newton–Raphson iteration process is used to
calculate the local values of NA for each node xC . We cannot incor-
porate this iterative scheme within the mid-point type discretisa-
tion without cumbersome modifications. An approach proposed
in Hesch and Betsch [11] for contact problems would increase
unnecessarily the total number of unknowns, limiting the effi-
ciency of the overall algorithm. Thus, we resort to evaluating the
mapping (38) itself at time n as follows,

IXs
t
ðNAðX; tÞÞ ¼

Xnnode

C¼1

NAðxðXC ; tnÞÞNCðXÞ: ð57Þ

This approach has also been proposed in Hesch and Betsch [11]
where it has been shown to be very suitable for contact problems.
A similar approach is followed in the case of the IFEM-NURBS map-
ping (41) or the ISPM mapping (45).

5. Numerical examples

In this section, we aim to evaluate in a comprehensive manner
the different continuum immersed approaches presented above.
In particular, we compare the convergence and numerical
performance of the IFEM and the ISPM. The whole computational
Fig. 3. Geometry and boundary condi
algorithm has been programmed in MATLAB using C++ MEX imple-
mentations for the core functionality. A standard iterative GMRES
solver is used to solve the linear system arising as a result of each
Newton–Raphson iteration.

5.1. Free falling cylinder

We consider a well established benchmark problem whose ana-
lytical solution is known. The problem is defined by a free falling
cylinder immersed in a viscous Newtonian incompressible fluid
of viscosity lf ¼ 0:1, modelled within a two-dimensional setup.
The geometry of the problem as well as the boundary conditions
are shown in Fig. 3. Both the solid and the fluid are subjected to
a gravitational force field with acceleration defined by g ¼ 9:81.
The density of the fluid is taken as qf ¼ 1000 whereas the density
of the solid is qs ¼ 1200. For a rigid cylinder, the analytical solution
for the terminal velocity vend reads,

vend¼ðq
s�qf Þga2

4lf
ln

L
a

� �
�0:9157þ1:7244

a
L

� 	2
�1:7302

a
L

� 	4
� �

;

ð58Þ

where the following parameters L ¼ 0:02 and a ¼ 0:0025 have been
used for this specific simulation. Isoparametric quadrilateral finite
elements will be used to model numerically the fluid and the
immersed solid, the latter being always linear. For the IFEM
methodology, the immersed solid is approximated by means of a
Neo-Hookean constitutive law defined by,

WðCÞ ¼ ls

2
½trðCÞ � 2� þ ks

2
ðln JÞ2 � ls ln J; ð59Þ

where the Lamé parameters are taken as ks ¼ 1537:845857 and
ls ¼ 384:461538 which corresponds to a Young’s modulus E of
1076 and a Poisson ratio m of 0.4. For the ISPM approach, a simpli-
fied incompressible Neo-Hookean law defined by,

WðCÞ ¼ ls

2
½trðĈÞ � 2�; Ĉ ¼ J�2=3FT F ð60Þ

is evaluated at each integration point ap. In this case, the nodes of
the solid finite element mesh are not required for computational
purposes.

Firstly, the results for the IFEM approach are shown in Figs. 4
and 5. Fig. 4 displays the convergence results for a Q1Q1 fluid finite
element discretisation whereas Fig. 5 displays the convergence re-
sults for a Q2Q1 Taylor–Hood finite element discretisation [5]. The
terminal velocity reached by both approaches converges to the
same value, slightly overestimating the analytical result for the ri-
gid case.

As can be observed, all the numerical simulations have been run
with the same solid finite element mesh comprised of 1600 ele-
ments, except for the finest fluid simulation of 384 � 288 Q2Q1
elements, where a finer solid mesh of 3774 elements has been
utilised in order to ensure the accurate description of the solid
phase (i.e. the accurate spatial integration of the immersed solid
stored energy functional, cf. Fig. 2).
tions for the free falling cylinder.



Fig. 5. IFEM, Q2Q1 fluid element.

Fig. 4. IFEM, Q1Q1 fluid element. Fig. 6. IFEM, Q2Q1 NURBS fluid element.
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Remark: A mesh of 384 � 288 Q2Q1 elements consists of
998,691 unknowns including 111,265 Lagrange multipliers for
the pressure field. In contrast, a mesh of 384 � 288 Q1Q1 elements
consists of 333,795 unknowns and the same number of Lagrange
multipliers as used for the Q2Q1 formulation. The number of nodes
used to set up a mesh of 384 � 288 Q1Q1 elements (111,265) is
identical to the number of nodes used for a mesh of 192 � 144
Q2Q1 elements. Furthermore, a mesh of 384 � 288 quadratic
NURBS based Q2Q1 elements consists of 333,122 unknowns
including 110,592 Lagrange multipliers. Thus, the mesh of
384 � 288 quadratic NURBS elements is comparable (in terms of
unknowns) to meshes of 384 � 288 Q1Q1 and 192 � 144 Q2Q1
Lagrangian elements.

Notice the existence of numerical oscillations in the diagrams,
which are clearly related to the fluid mesh discretisation, decreas-
ing as the fluid mesh is refined. These oscillations emanate from
the lack of C1 regularity of the shape functions across fluid finite
element interfaces, typical of a Finite Element methodology. This
lack of regularity introduces artificial jumps in the fluid stress field
which generate artificial oscillations in the resulting velocity field.
Furthermore, these artificial fluid oscillations are propagated into
the immersed solid phase through the Euler–Lagrange mapping
operator, activating high deformation eigenmodes within the solid
(i.e. oscillations of higher frequency). All in all, two families of
oscillations, emanating from the fluid and solid phases, coexist
and can be observed in the above diagrams.

The diagram in Fig. 6 displays the results for the Q2Q1 NURBS
finite element discretisation. Notice that the Q1Q1 NURBS based
discretisation matches exactly the Lagrangian based discretisation,
hence it has not been analysed. Results compare well with those
obtained by using Lagrangian shape functions, where the numeri-
cal oscillations, despite being also present, are slightly damped
down due to the smoother nature of the NURBS fluid spatial dis-
cretisation. As previously remarked, the example using 384 � 288
Q2Q1 NURBS elements consists of a similar number of unknowns
as the example in Fig. 4 using 384 � 288 Q1Q1 Lagrangian ele-
ments. In general, the use of higher order NURBS shape functions
produces smoother results when compared with Lagrangian shape
functions, see Cottrell et al. [17] and Bazilevs et al. [39].

Fig. 7 displays the results for a given fixed spatial discretisation
(using the IFEM and a Q2Q1 Lagrangian based shape function) with
various time step sizes Dt. This diagram aims to analyse the effect
of the time integration scheme within the overall computational
algorithm. As can be noticed, the terminal velocity is independent
of the time step used within a suitable range, chosen based upon
accuracy and stability. This clearly demonstrates the robustness
of the implicit time integration scheme. Moreover, it can be de-
duced that the numerical oscillations observed in previous figures
cannot be attributed to the time integrator, but to the spatial semi-
discretisation approach.

The diagrams in Figs. 8 and 9 display the results for the alterna-
tive ISPM method, considering Q1Q1 and Q2Q1 Lagrangian based
fluid element discretisations and a spline-based kernel function
for the interpolation operator (see Eqs. (42) and (43)). Specifically,
the following one-dimensional spline-based kernel function was
employed [8]

/ rð Þ ¼

0; r 6 �2;
r
4þ 5

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2�12r�7
p

8 ; r 6 �1;

3
8þ r

4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2�4rþ1
p

8 ; r 6 0;

� r
4þ 3

8þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2þ4rþ1
p

8 ; r 6 1;

5
8� r

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4r2þ12r�7
p

8 ; r 6 2;
0; r > 2:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð61Þ



Fig. 10. IFEM, Q1Q1 fluid element.

Fig. 11. IFEM, Q2Q1 fluid element.

Fig. 12. Velocity field at time t ¼ 1:5.

Fig. 7. Comparison of different time steps sizes.
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Fig. 8. ISPM, Q1Q1 fluid element.

Fig. 9. ISPM, Q2Q1 fluid element.
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The integration points ap used for the integration of the immersed
solid energy functional are taken as the Gauss points of the under-
lying finite element discretisation. In this case, the terminal velocity
is underestimated, in contrast to the IFEM approach where it was
overestimated (see Figs. 4–6). The results for the Q1Q1 fluid
element discretisation are in perfect correlation with the results



Fig. 13. Deformation after t ¼ 0:085 seconds and von Mises stresses.

Fig. 14. Determinant of the deformation gradient tensor.
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presented in Gil et al. [7] where convergence of the ISPM is demon-
strated for a 768 � 576 Cartesian Finite Volume staggered fluid
mesh.

The smoother nature of the spline-based kernel functions [8]
used in the Euler–Lagrange mapping damps down considerably
the artificial oscillations with respect to the IFEM approach. Cru-
cially, in Fig. 8 the oscillations are nearly removed, making it a very
competitive approach. The absolute error in the terminal velocity
for coarse meshes seems to be larger than that of the IFEM. How-
ever, the artificial oscillations shown in Figs. 4 and 5 have a signif-
icant influence on the global behaviour of the overall system,
Fig. 15. Geometry and boundary conditi
which cannot be disregarded. These kernel functions fulfil C1 regu-
larity across fluid element interfaces and have a fast decaying Fou-
rier transform, which translates to quicker dampening of spurious
high frequency modes present in the solution. An extensive analy-
sis of the smoothing properties of these spline-based kernels can
be found in Ref. [8].

Figs. 10 and 11 display the results of the problem using a Young’s
modulus two-order of magnitude higher, that is E = 107,600. As ex-
pected, both fluid discretisations, Q1Q1 and Q2Q1, converge now to
the correct value of terminal velocity vend ¼ 0:0365. With the pur-
pose of comparing the effect of an alternative constitutive model,
we have included the results for a Saint Venant–Kirchhoff constitu-
tive law for the Q2Q1 element in Fig. 11. As expected, since the
problem at hand deals with small deformations, the behaviour of
the material remains quasi-linear and the convergence curves coin-
cide for different constitutive laws.

Let us emphasise that a 192 � 144 fluid mesh results in 250515
degrees of freedom for the Q2Q1 finite element discretisation and
in 83955 degrees of freedom for the Q1Q1 discretisation. Naturally,
it can clearly be observed that the convergence is directly linked to
the number of degrees of freedom employed in the numerical sim-
ulation. As shown in Figs. 10 and 11 compared to Figs. 4, 5, 6, 8, 9,
the material properties of the immersed solid dominates the global
error behaviour (i.e. accurate characterisation of the rigid cylinder).
As mentioned above, a compatible discretisation is required for
both phases to guarantee the accurate representation of the FSI ef-
fect and prevent the ill-conditioning of the tangent stiffness matrix
for the Newton–Raphson iterative scheme. The diagram in Fig. 12
shows the norm of the velocity field at time t ¼ 1:5 for the ISPM
approach using 192 � 144 Q1Q1 fluid elements, in agreement with
[7].

Finally, it is worthwhile to note that for the example included in
this section, the immersed body shows a quasi incompressible
behaviour (maxð_JÞ 
 10�8), so neither the compressible part of
the Neo-Hookean formulation nor the modification of the kine-
matic constraint in (22) have any significant effect on the final re-
sult. In the following section, a compressible immersed system will
be analysed to demonstrate the effect of these modifications in the
constitutive law and the conservation of mass equation.

Highly deformable cylinder. To demonstrate the suitability of
the described approach for an immersed compressible solid, we
set the Lamé parameters to ks ¼ 0 and ls ¼ 5:36 corresponding
to a Young’s modulus of E ¼ 10:76 and a Poisson ratio of m ¼ 0. This
way, the effects of a highly deformable and compressible cylinder
can be studied. In this case, 192 � 144 Q2Q1 Taylor–Hood fluid and
1600 solid elements are used for the calculation and the IFEM ap-
proach is used. The deformation after t ¼ 0:085 and the von Mises
stresses are shown in Fig. 13. As expected, the highest stresses can
be observed near the leading edge of the immersed cylinder. Fig. 14
shows the distribution of the determinant of the deformation ten-
ons for an idealised bi-leaflet valve.



Fig. 16. Time evolution of the leaflets and streamlines of the fluid.

C. Hesch et al. / Comput. Methods Appl. Mech. Engrg. 247–248 (2012) 51–64 61
sor detðFÞ which illustrates the different areas of compression and
expansion within the immersed solid.

5.2. Idealised bi-leaflet valve

The next example is extracted from [7] and is explored in order
to study the suitability of an immersed continuum methodology to
the analysis of FSI haemodynamical problems. An idealised two-
dimensional channel is considered filled with an incompressible
Newtonian viscous fluid with viscosity l ¼ 1 and density
q ¼ 1 � 105 mimicking the behaviour of the blood. Two leaflets
are inserted into the channel, as seen in Fig. 15, representing the
behaviour of an idealised two-leaflet valve. The top and bottom
boundaries of the channel are fixed (i.e. homogeneous Dirichlet
boundary conditions), a pulsatile non-reversible inflow is applied
at the left hand boundary using the time-varying amplitude func-



Fig. 18. Y-position of the tip of the upper leaflet.

Fig. 19. Idealised bi-leaflet valve. Locking effects.
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tion AðtÞ ¼ 5 � ðsinð2ptÞ þ 1:1Þ and homogeneous Neumann bound-
ary conditions are imposed at the right hand boundary. The leaflets
are modelled as Neo-Hookean immersed solids using the Lamé
parameters ks ¼ 8 � 106 and ls ¼ 2 � 106 corresponding to a Young’s
modulus of E ¼ 5:6 � 106 and a Poisson ratio of m ¼ 0:4. The leaflets
are deliberately shortened to leave a gap between them, in order to
simulate the behaviour of a regurgitating mitral valve due to stiff-
ened (stenotic) leaflets (cf. Gil et al. [7]). For the numerical results
presented in this section, the IFEM approach will be selected and
compared against the results obtained in [7] by using the ISPM
approach.

The series of diagrams in Fig. 16 show the time evolution for the
pulsatile flow and deformation of the membranes using a 256 � 64
Q1Q1 fluid mesh discretisation and 40 � 4 linear solid elements.
The obtained deformation patterns are as expected and in correla-
tion with those reported in [7] with the alternative ISPM method-
ology. The results demonstrate that the IFEM immersed continuum
approach is able to successfully model the inclusion of highly
deformable structures into the fluid without the need for expen-
sive moving/remeshing algorithms. The methodology allows for
very simple and robust treatment of the structure.

This example has been analysed for a series of fluid discretisa-
tions in order to study the convergence pattern of the algorithm.
The movement of the tip of the upper leaflet in the ox and oy direc-
tions are shown in Figs. 17 and 18, respectively, for different dis-
cretisations. The results based on the Q1Q1 fluid finite element
discretisation converge to the results of the Q2Q1 fluid finite ele-
ment discretisation for a sufficiently fine mesh. Once again, con-
verged results are in perfect agreement with those obtained with
the ISPM shown in Gil et al. [7].

5.3. Idealised bi-leaflet valve – locking effects

In this subsection, the example described in the previous sub-
section is analysed again for different solid material parameters.
The objective is to investigate possible locking effects in the case
of a nearly incompressible behaviour, using a Young’s modulus of
E ¼ 5:6 � 107 and a Poisson ratio of m ¼ 0:4990 for both leaflets.
The simulation is carried out by using the IFEM approach and the
fluid is discretised using 128 � 32 Q2Q1 Taylor–Hood elements.

The lower membrane is modelled with a standard displace-
ment-based isoparametric quadrilateral linear finite element. It is
expected that for this discretisation, the membrane should experi-
Fig. 17. X-position of the tip of the upper leaflet.
ence locking effects, classical in displacement-based formulations
(see Eq. (47)). On the other hand, the upper membrane is modelled
by means of an enhanced finite element model, whose detailed for-
mulation is presented in Appendix A). In this case, it is expected
that the enhanced model should overcome any locking difficulties.

Fig. 19 displays the streamlines after t ¼ 0:3 and the resulting
deformation of the leaflets. Despite the fact that the streamlines
should show a symmetrical pattern with respect to the ox axis
for this Reynolds number regime, a clear locking effect can be ob-
served in the lower leaflet. On the other hand, the upper leaflet de-
forms as expected, demonstrating the need to implement
enhanced solid finite elements in the range of nearly incompress-
ible scenarios for the IFEM approach. When using the ISPM ap-
proach, these locking effects are not observed [7,8]. This stems
from the fact that the deformation gradient tensor F is obtained
after time integration of the spatial velocity gradient tensor l,
which is evaluated from the Euler–Lagrange mapping (see Eqs.
(48) and (49)).

6. Conclusions

In this paper, the Immersed Finite Element Method (IFEM),
introduced in [41] for the analysis of solid systems immersed with-
in an incompressible Newtonian viscous fluid, is further enhanced
by means of three new updates. Firstly, a key improvement is the
modification of the conservation of mass equation in the back-
ground fluid (i.e. divergence free velocity field) in order to include
the possibility of non-isochoric deformations within the solid
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phase. Secondly, in the incompressible limit for the solid phase, an
enhanced evaluation of the deformation gradient tensor is intro-
duced in a multifield Hu-Washizu sense to overcome locking ef-
fects. The methodology has been thoroughly analysed and
compared against the alternative Immersed Structural Potential
Method (ISPM), recently formulated in [7].

Thirdly, an implicit one-step time integration scheme, with
enhanced stability properties, has been implemented in conjunc-
tion with consistent Newton–Raphson linearisation for optimal
quadratic convergence. The resulting monolithic methodology
has been comprehensively assessed for a range of Lagrangian
and NURBS based shape functions for a series of numerical
examples, in order to study the effect of the spatial semi-discret-
isation in the solution. Numerical oscillations have been ob-
served due to the lack of C1 regularity across element
interfaces. As expected, the refinement of the fluid mesh mini-
mises the appearance of the oscillations. Furthermore, the high-
est regularity of the kernel functions used for the Euler–Lagrange
mapping in the ISPM approach provides excellent results, even
for extreme coarse meshes with low order fluid discretisation.

Acknowledgements

This work was partially supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) through the Grant EP/
F03010X, whose support is gratefully acknowledged.

Appendix A. Enhanced finite elements

Immersed solids modelled by means of the IFEM approach are
subject to volumetric locking effects in the incompressible limit,
analogous to those experienced by standard solids when using dis-
placement-based elements. To prevent the occurrence of those ef-
fects, the deformation gradient tensor is enhanced as follows

Fh ¼
Xnnode

C¼1

�xC 	 dGradXðNCÞ þ
Xnenh

C¼1

aC 	 gGradXðMCÞ; ð62Þ

where

dGradðNCÞ ¼ Grad0ðNCÞ þ
X4

J¼1

cC
J
gGradXðHJÞ: ð63Þ

Here, cJ are gamma-stabilization vectors, HJ hourglass functions
and

gGradXð�Þ ¼
j0

jðnÞ J
�T
0 Gradnð�Þ: ð64Þ

For further details regarding this implementation, see Belytschko
et al. [1]. The consideration of a three field Hu-Washizu functional
yields

da �
Z
B0

gGradXðMAÞ � Ss
n;nþ1Fh

nþ1
2
dV

� �
¼ 0 ð65Þ

to solve for the discrete unknowns ah ¼
Pnenh

C¼1MCaC (cf. [10]). Since
the additional unknowns are local within each element we can con-
dense the system and recover aC;nþ1 afterwards.
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