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Abstract. Computer methods for flexible multibody dynamics that ate &btreat large de-
formation phenomena are important for specific applicasisnch as contact problems. From
a mechanical point of view, large deformation phenomenaamaulated in the framework of
nonlinear continuum mechanics. Computer methods for ldefermation problems typically
rely on the nonlinear finite element method.

On the other hand classical formalisms for multibody dyranaire based on rigid bodies.
Their extension to flexible multibody systems is typica&sgricted to linear elastic behavior.

In the present work the nonlinear finite element method ieneldd such that the simula-
tion of flexible multibody dynamics including large defotiroa phenomena can be handled
successfully.
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1 INTRODUCTION

In the present work we address computer methods that camelange deformations in the
context of multibody systems. In particular, the link beémenonlinear continuum mechanics
and multibody systems is facilitated by a specific formwalaif rigid body dynamics [1]. This
formulation is closely related to the notion of natural atinates/[2]. Our approach makes pos-
sible the incorporation of state-of-the-art computer madéhfor large deformation problems.
Examples are arbitrary constitutive models [3], geomaliycexact beams and shells [4], do-
main decomposition [5], and large deformation contact [6].

Energy and momentum consistent numerical methods for iisd problems offer superior
stability and robustness properties. Our approach reliea oniform formulation of discrete
mechanical systems such as rigid bodies and semi-discedil# bodies resulting from a
finite element discretization of the underlying nonlineanttnuum formulation. The uniform
formulation results in discrete equations of motion assgntine form of differential-algebraic
equations (DAEs). A constant inertia matrix is a charasterifeature of the present DAES.
In particular, the simple DAE structure makes possible #sgh of structure-preserving time-
stepping schemes such as energy-momentum schemes and tmorsymplectic integrators
[7,18].

A further advantage of the present treatment of flexible &nd bodies is that flexible multi-
body systems can be implemented in a very systematic wagctnthe present approach leads
to a generalization of the standard finite element assermmbbedure. The generalized assembly
procedure makes possible the incorporation of both arlgitranlinear finite element formula-
tions and multibody features such as joints.

On the other hand the nonstandard description of rigid lsogiguires some care concerning
the consistent application of actuating forces. This issilebe addressed in the context of
kinematic pairs. Moreover the incorporation of large defation phenomena into the present
description of multibody dynamics will be dealt with. In gaular, we will outline the inclusion
of large deformation contact into flexible multibody dynami

2 ROTATIONLESS FORMULATION

The rotationless rigid body formulation![1] relies on redant coordinates that can be
viewed as natural coordinates. Natural coordinates arepueed of Cartesian components
of unit vectors and Cartesian coordinates (5ée [2] and feeargces cited therein). L& € R?
be an arbitrary region to be regarded as rigid body. A mdtedent is denoted byX € B and
the mass density is given py X'). The motion of the rigid body can be characterized by a rigid
transformation with:

(X, t)=¢t)+R(t) X : (1)

Herey € R? specifies the placement of a point of reference wheReas SO(3) is a rotation
matrix. The column vectord; of the rotation matriXR are denoted as “directors”

which represent a body-fixed orthonormal frame. The orthmiadity condition is enforced with
explicit constraint@;’}t = d,-d;—J,; and associated Lagrange multipli&rs. Accordingly, the
vector of redundant coordinates reags- (¢, d;, ds, d3). The equations of motion pertaining
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to the constrained mechanical system at hand can be writen a

qg—v=0
Mv +V,V — f+V,@": A™=0 (3)
o
PN =0

with constant mass matrixI, potential functiorl’(q) and generalized force vectgr Regard-
ing structural elements such as beams and shells which aargmlarge deformations and
large rigid body rotations, the semi-discrete equationsation stemming from the underlying
rotationless formulation assume a form analogous to therdiitial-algebraic equatiorid (3). In
the case of structural elements the potential functiotypically contains contributions of the
stored energy in terms of nonlinear strain measures, seanf®@]4] for further details. The
underlying DAE structure of the equations of motiénh (3) nmpessible the straightforward
extension to multibody systems.

3 JOINT FORMULATION

Based on previous works [10,/13] we further develop the féatan of joint (or external)
constraints. In particular, we develop a modified methogyplor the formulation of joint con-
straints which will be beneficial to the application of exigrtorques. The present approach is
unconditionally free of singularities and automaticabyisfies the constraints in the initial con-
figurationB,. Additionally, it provides advantages for the consisterhputer implementation.

Let there be two rigid bodiebandII with associated coordinatég, 'd; and', 'd;, i €
{1,2,3}. The two bodies are assumed to be interconnected by a revjoimt. The joint
rotation axis will be determined in the initial configuratiés, by a position vectofy and a
unit vector?d;. For completeness, we introduce two arbitrary directets and%d; which
fulfill the condition?R = Y %d; ® e; € SO(3). For each body with o € {I, 1T} we introduce
a body-fixed framg®¢’, d;} with:

CMLP/:CVLP+CVRCOC

4
“R'=“RC, )

R = ) d; ® e; and the constant vectors/matrieesandC,,, which are to be determined in the
initial configurations:
ca = "Ry’ (¢ — ") ©
C. = “Ry' “R;,
To parameterize the revolute pair, we choose for both batiedollowing conditions in the
initial configurations:
“ph ="
aR6 = Z Zdi X e;
By using the transformed framé&y’, “d;}, the external constraints corresponding to the rev-
olute joint can now be written as:

(6)

I(P/ . H(p/
= |- d, . (7)
dl ' d3
It can be concluded that using the transformed frames aléosisple and systematic formula-
tion of any lower kinematic pair with all the advantages nmmd above.

3
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4 CONSISTENT FORMULATION OF TORQUES

Next consider a rigid body on which an external tordu€ (¢) € R? is applied. The corre-
sponding expression for the virtual wo@* is given by

G™'=60(t)- M*(t) . (8)

wheredd < R? is a virtual rotation. In the rotationless formulation ext& torques can be
formulated as follower loads. Correspondingly

G = od(f) - (MY(0) % (1) ©)

We will show that equationi{9) is equivalent to equatign @pm the unit-length condition on
the directorsd; - d; = 1, it follows thatd (d; - d;) = 24d,; - d; = 0. Accordingly,od; L d; and
thereforedd; = 60 x d;. Then equatior( (9) directly leads to

G™'=1(60 x d;)- (M* x d;) : (10)
The last equation can be recast in the form

G = 1160 - M")(d; d;) — (d; - M*) (d; - 50))]
=06 -M* (11)

where the mutual orthonormality of the directors has be&artanto account. This corrobo-
rates that equation](9) is the appropriate formulationterihclusion of external torques in the
rotationless formulation.

Consistency in the discrete setting Next we show that the naive use of equatioh (9) in the
time discretization in general violates the balance lavafaggyular momentum. Consider a single
external torqueM ™ exerted on the rigid body. In what follows we restrict oueatton to the
rotational motion of the rigid body. The corresponding dores of motion can be written as

G = dd; - | My d; — M x d; + V, @™ : A™] (12)

whereM;; denote the constant components of the mass matrix. We now oskof a mid-
point-type discretization:

1 . . . .

Introducing admissible variations of the fod; = u x dm+% for arbitraryu € R?, equation

(@3) yields

1

SR Y

M;; (dinJr% Xdjnp1 —dj, 1% djn) - %der% X (M:‘H% X dz’nJr%)} :

(14)
The definition);; (dm% X djpi1 — i1 X d;,) = L,., — L, for the incremental change
of the time-discrete angular momentum (s€e [1]) leads tdah@wving discrete balance equa-
tion:
Loyt~ L= —34d,, .1 % (dm% X M;#) . (15)

2

4
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The last equation can be alternatively written as

Ly —L,=-%,,,:d,,,. M,

zn+§ zn+§

1 (16)

2

whered denotes a skew-symmetric matrix with associated axialovettc R?, so thatd a =

d x a for anya € R3. Since in the present time discretization the algebraistamts are
only satisfied at the time nodes, the fulfillment of the ortlvonality condition on the directors
is restricted to the time nodes as well:

Do d = §;; fora € {0,1} N = —2Ifora €{0,1} 17)
intao jnta 7£ 5ij fora c (0’ 1) tnta Yinta % —9Ifora e (0’ 1)
where
din-i—oz = (1 - a)din + adin—i—l (18)

Therefore, discrete balance of angular momenfuym, — L, = AtM_ . is generally not

fulfilled in equation[(I6). To eliminate this inconsistenae introduce contravariant directors
d,_ . defined by ‘ ‘
d, 0o djnya =0 foranya : (29)

We now define as discrete version [of (9):
. 1 ‘
ext _ — ) 3 * %
G = 5 ddi(t) (MH% x dn+%> . (20)

In the following we will refer to this approach as the conamsnt torque formulation. It can
be easily verified by following the above lines that the cavdiriant torque formulation restores
the fulfillment of the discrete balance law for the angulanmeotum.

5 COORDINATE AUGMENTATION TECHNIQUE

An alternative approach to the incorporation of torques the rotationless rigid body for-
mulation relies on the coordinate augmentation technigae,[14]. This approach is based
on the introduction of an additional constraiit'? in conjunction with an additional rotational
degree of freedom. Thanks to the systematic approach in secfibn 3, this cainsttan be
applied directly with:

d9 = 1d) Mgl 4 sinvy 4 'dy - dfy — cosy (21)

and will be denoted as “classical augmentation”. It belanghe following class of augmenta-
tion constraints
P9 =g ('d, - "dy +sinvy) + b ('dy - "dy — cosv) : (22)

with constant parametetisandb. It can be shown that for each combination of these parasieter
there exist configurationg* = arctan (g) leading to rank deficiency in the discrete setting.
This problem can be alleviated by choosingndb as fixed quantities af, obtained from the
previous time step:

a = cos(,)

b = sin(v,)

It can be shown that this modified augmentation is stable uptédions of%w per time step. As
can be observed from equatidnl(22), the augmentation @niis nonlinear in the coordinate
~. An energy-momentum consistent time-stepping scheme eavbtained by applying the
notion of a discrete gradient in the sense of [15].

(23)

5
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6 INCLUSION OF LARGE DEFORMATION CONTACT

The presented framework based on a set of differentiabatge equations can be directly
extended to large-deformation contact problems. In pagrc unilateral contact constraints
can be formulated as a set of inequality constraints whichlmarewritten as equality con-
straints using a standard active set strategy. The nodarface (NTS) method (see [11] for
details) can be considered the prevailing method for comablems in the context of finite
elements. Actual developments extend the collocatioe-lypS method to a variationally con-
sistent formulation known as mortar contact method (sep.[E&r both methods, the classical
Karush-Kuhn-Tucker conditions read

@COTZ S 0’ )\COTZ Z 0’ (I)con)\con — 0 (24)
which can be rewritten as
&)con — )\om _ HlaX{O, eom C(I)con}7 c>0 (25)

This formulation makes possible a very efficient computeplementation of the active set
strategy. We refer ta [6] for a full account on the presentrfolation of large deformation
contact problems.

7 EXAMPLE 1

In the first numerical example we investigate the applicatibexternal torques in the rota-
tionless formulation of multibody dynamics. To this end vemsider the revolute pair depicted

in Fig. .
F(t) >

_ 0
IZt;‘\';';;.\_ g 1‘ FO=10-1
1 J~. 2
25‘\'\'\.\.\Hd2 ' 2t for0 <t<0.5
ft) =49 —-2t+1 for05<t<1
- 1 - - 1.5 - 0 fort > 1
M =2

Figure 1: Revolute pair: Geometry of the two rigid bodiesgms) with densityp = 1 and definition of the loads.

The revolute pair consists of two prisms that are connecyeirevolute joint with axigd, .
All dimensions of the kinematic pair, except the thicknesss-direction which is 1, are given

6
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Figure 2: Revolute pair: Snapshots of the motion.

in Fig. [I. To initiate the overall motion of the system, a déade F'(¢) is acting fort < 1.
Throughout the motion a constant internal torqué is applied about the revolute axtd;.
After t = 1 no external loads are acting so that total linear and angutenentum have to be
conserved quantities.

The resulting motion of the 2-body system is illustratedwvgibme snapshots in Fig. 2. Three
alternative ways of applying the actuating torqué are considered:

1. Straightforward mid-point evaluation of equatiéh (ynbed naive approach.
2. Newly proposed contravariant torque formulation, saeaé&qgn [(20).

3. Coordinate augmentation outlined in Secfibn 5.

angular momentum

0,2 0,2

angular momentum

__________________________________

~ o,od

1 . . . . 1 . . . .
8 ,0 2,0 4,0 6,0 8,0 10,0 8 ,0 2,0 4,0 6,0 8,0 10,0

t t

Figure 3: Revolute pairAt = 1-102): Failure of the naive approach (left) and success of tweradttive
approaches (right).

It can be observed from Figl 3 that the naive approach fadatisfy conservation of angular
momentum. In contrast to that, the two alternative methodisad do fulfill this fundamental
conservation law. Although approach 3. guarantees coatenvof angular momentum for
any time step, it may lead to unphysical behavior dependmthe specific formulation of the
augmentation constraint. This can be seen from Eig. 4 whéglicts the total kinetic energy
versus time for two different augmentation constraints.evéhas the “classical augmentation”
leads to unphysical growth and decay of the kinetic enelgyatternative method described in
Sectior b yields the correct increase in the kinetic enesgg (variable augmentation” in Fig.
4.
It can be concluded that a naive application of torques inrthationless formulation of
multibody dynamics can result in completely unphysical euoal results.

7
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angular momentum kinetic energy
T T T T 300, T

T T
— L, — classical augmentatiol

0,2

—— Ly —— variable augmentatio|
---L,
200,0-
il el elele el
! c
RV &
100,0-
18 . . . . 0, . . .
,0 2,0 4,0 6,0 8,0 10,0 8,0 2,0 4,0 6,0 8,0 10,0

Figure 4: Revolute pairft = 1-10~2): Total angular momentum (left) and total energy (right)oth “classical”
and “variable augmentation”.

8 EXAMPLE 2

Strain energy

1.0
0.8
K o6
04+

0,21

018,0 0,5 1,0 15 2,0 2,5 3,0

t

Figure 5: Multibody system with flexible components Figure 6: Strain energy of flexible components

The second example deals with the flexible multibody systepiated in Fig.[5. This
example demonstrates the inclusion of geometrically elsaains and shells as well as large
deformation contact within the framework of flexible mutity dynamics. The model of a
tennis player consists of 19 rigid bodies, whereas the $erauket is modeled with nonlinear
beams and shells (see FIg. 5). Shell elements are also usewbfieling the tennis ball. The
motion of the tennis player himself is prescribed (fullywsted). Due to the presence of the
flexible tennis racket the whole system is highly underaetialhe motion of the system until
the onset of contact between the tennis ball and the rackidissrated with some snapshots

8
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ions accompanied

t of the tennis ball on the racket leadsitgd deformat

with a sudden increase of the strain energy (Eig. 6).
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