Mehrachsige Beanspruchung von thermoplastischen Konstruktionsschaumstoffen

Dr.-Ing, Markus Münch Dr.-Ing, Stephan Rohde Prof. Dr.-Ing, Michael Schlimmer Institut für Werkstofftechnik Universität Kassel

- **1 Motivation und Problemstellung**
- 2 Probenentwicklung und experimenteller Aufbau
- 3 Versuchsergebnisse aus ein- und mehrachsiger

Beanspruchung

4 Beschreibung des Versagensverhaltens von

Schaumstoffen

- **5** Numerische Simulation von Schaumstoffen
- 6 Zusammenfassung

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

UNIKASSEL VERSITÄT

Motivation und Problemstellung

Motivation und Problemstellung

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

Anwendungsbeispiele für Kindermobilität UNIKASSEL VERSITÄT

Experimentelle Ermittlung des mechanischen Verhaltens

Bisher

- Überwiegend einachsige Druckversuche
- Unterschiedliche und uneinheitliche Probengeometrien (Quader, Würfel, Schulterproben), werkstoffmechanisch oft nicht sinnvoll
 - keine definierte, makroskopisch homogene Spannungszustände
- Keine lokale Verformungsmessung
- Einspannung des Probekörpers in die Prüfmaschine problematisch
- Versuchsregelung nur über Traversengeschwindigkeit

Angestrebt

- <u>Eine</u> Probenform für alle Versuchsarten
 - Zug, Druck, Schub und Kombinationen
 - Kurzzeit-, Langzeit-, Schwingbeanspruchung
- Verformungsmessung, Spannung-Verzerrung-Verhalten auch bei kombinierten Beanspruchungsarten
- Versuche mit konstanter Dehnungs- und Gleitungsgeschwindigkeit

Werkstofftechnik	UNIKASSEL
Werkstoffverbunde	
Verbundwerkstoffe	VERSITAT

Zylindrische Hohl- oder Vollprobe

KASSEL

Anforderungen:

- homogene Spannungsverteilung im Prüfquerschnitt
- Möglichkeit zur Erzeugung mehrachsiger Spannungszustände
- Probenherstellung mit Hilfe spanabhebender Bearbeitungsverfahren
- hohe Oberflächenqualität (optische Verformungsmessung)
- Probenherstellung im Schaumwerkzeug mit Schäumhaut

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe _

Prüfkörper

Probengeometrie und Versuchsaufbau

Fügevorrichtung zur Herstellung des Schaumstoffprüfkörpers durch Kleben in Metallhülsen: Überlappungsklebung

- Legierung: AIMgSi0,5
- Halbzeugmaße: ø60 mm x 220 mm

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

Probengeometrie für Aluminiumschaum

U N I K A S S E L V E R S I T 'A' T

Gerade zylindrische Hohlprobe

Fügevorrichtung zur Herstellung des Schaumstoffprüfkörpers durch **Stumpfkleben**

UNIKASSEL

S

V

ER

Rechteckprobe

- Querschnitt 40 mm x 30 mm
- Zugprobe: 80 mm lang
- Druckprobe: 40 mm lang

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

Probengeometrie für Polymerschaumstoffe

V

E R S **'A' T**

Т

Werkstoffverbunde Verbundwerkstoffe

Berührende, integrale Verformungsmessung

Biaxialer Verformungsaufnehmer

 Messung der Verformungen im Bereich homogener Verzerrungen

UNIKASSEL

S

ER

- axial und torsional entkoppelte Messung
- Applikation des Verformungsaufnehmers an Einspannhülsen

Vorteile:

- berührungslos
- partielle Verformungsmessung
- echtzeitfähig

Nachteil:

nur axiale
 Verformungsmessung

Berührungslose, partielle Verformungsmessung

Berührungslose, lokale Verformungsmessung

- berührungslos
- lokale Verformungsmessung in Axial- und Querrichtung
- nicht echtzeitfähig

Optisches Felddehnungsmesssystem

U N I K A S S E L V E R S I T 'A' T

Zugbeanspruchung

 ε = 0,012 σ = 9,96 MPa Druckbeanspruchung

 ε = -0,009 σ = -9,86 MPa

Lokale Dehnungsverteilung

U N I K A S S E L V E R S I T 'A' T

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe 3D Computer Tomograph (BAM-Berlin)

UNIKASSEL VERSITÄT

Probengeometrie und Versuchsaufbau

Versuchsaufbau zur ein- und mehrachsigen Prüfung von **UNI**KASSEL

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

zylindrischen Proben

ERSI V

TAT

 $\sigma_{n} = \frac{F}{A_{0}}$ $\varepsilon_{w} = \ln\left(\frac{1}{l_{0}}\right) = \ln\left(1 + \varepsilon_{0}\right)$

 $\sigma = f(\varepsilon, \varepsilon, t, T, ...)$

$$\gamma = \frac{M_t}{W_p}$$
 $\gamma = \arctan\left(\frac{\pi}{180^\circ} - \frac{r}{l_0 + \Delta l} - \phi\right)$

$$\frac{\mathrm{d}\varepsilon_1}{\mathrm{d}t} = \mathrm{konst.}$$
: $\frac{\mathrm{d}\varepsilon_x}{\mathrm{d}t} = \mathrm{konst.}$, $\frac{\mathrm{d}\gamma_{xy}}{\mathrm{d}t} = \mathrm{konst.}$

Verzerrungskombinationen (Gleitung-Dehnungsverhältnisse) der untersuchten Verzerrungszustände

	ZUG / DRUCK	TORSION	Verzerrungs- kombination G3E6	Verzerrungs- kombination G6E3
γ _{xy} /2	0	1	1/3	2/3
\mathcal{E}_{x}	1	0	2/3	1/3
$\frac{\gamma_{xy}}{2\varepsilon_x}$	0	$\rightarrow \overline{\infty}$	0,5	2

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

Versuchsparameter

U N I K A S S E L V E R S I T 'A' T

A T

Werkstoffverbunde Verbundwerkstoffe

Verbundwerkstoffe

Linearelastische Konstanten des Schaumstoffs EPP für eine Dehngeschwindigkeit von $d\varepsilon / dt = 10^{-2}$ und einer Gleitungsgeschwindigkeit von $d\gamma / dt = 2 \cdot 10^{-2}$

Ez	G	ν	Ed	σ_{zM}	$\tau_{max}^{1)}$	$\tau_{max}^{2)}$	$\sigma_{d, 40\%}$	ε _{zR}	γR ¹⁾
[MPa]	[MPa]	[-]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[-]
37,1	14,0	0,33	38,0	1,25	0,72	0,53	0,77	0,09	0,27

Zusammenfassung der Versuchsergebnisse

UNIKAS

F

S

FI

¹⁾ Wert aus Torsionsversuchen unter behinderter Axialverformung ($\varepsilon_x = 0$) ²⁾ Wert aus Torsionsversuchen unter unbehinderter Axialverformung ($\sigma_x = 0$)

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

SCHLIMMER (1983)

$$F = \left(\frac{1}{3}\right)^{m/2} \sum_{p=1}^{q} \left({}^{m}a_{p}\sigma_{F}^{m-p}J_{1}^{p}\right) + J_{2}^{m/2}$$

Beschreibung des Versagensverhaltens von Schaumstoffen

Beschreibung des Versagensverhaltens von Schaumstoffen

Beschreibung des Versagensverhaltens von Schaumstoffen

	Versagensbedingung	$σ_v$ - ε _v - Diagramm
MISES	-	-
DRUCKER-PRAGER	-	-
Bimodaler DRUCKER-PRAGER	+	-
SCHLIMMER	+ (kompliziert)	+

Werkstofftechnik Werkstoffverbunde Verbundwerkstoffe

Bewertung von Anstrengungshypothesen

UNIKASSEL VERSITÄT

Versuchsparameter

Prüfgeschwindigkeiten:

- $\dot{\varepsilon} = 0,001 \text{ s}^{-1}$
- $\dot{\varepsilon} = 0.01 \text{ s}^{-1}$
- $\dot{\varepsilon} = 0,1 \text{ s}^{-1}$
- $\dot{\varepsilon} = 0,65 \text{ s}^{-1}$

Beanspruchungsarten:

- Zug
- Druck
- Torsion
- Zug-Torsion
- Druck-Torsion

Verwendete Schaumdichten:

44 g/dm³
72 g/dm³
92 g/dm³

10 mm

AT

Flachprobe Zugversuch

Rohrprobe Zugversuch Rohrprobe Torsionsversuch

Bruchbilder

U N I K A S S E L V E R S I T 'A' T

Numerische Simulation von Schaumstoffen

Numerische Simulation von Schaumstoffen

Numerische Simulation von Schaumstoffen

- Ermittlung des makroskopischen mechanischen Werkstoffverhaltens unter einund mehrachsiger Beanspruchung
- Entwicklung einer neuen Versuchsmethodik
 - eine Probenform für alle Versuchsarten sowie geeignete Probeneinspannung
 - Verformungsmessung (integral, partiell, lokal)
 - Versuchsdurchführung mit konstanter Dehnungs- und Gleitungsgeschwindigkeit
- Untersuchung des Querkontraktionsverhaltens von EPP mit Hilfe optischer Messverfahren
- Beschreibung des Versagensverhaltens
 - bimodale Versagensbedingungen
 - Überführung in den Vergleichspannungszustand mit Anstrengungshypothesen auf Grundlage des Plastischen Potentials mit quadratischen Ansätzen nach SCHLIMMER
- FE-Berechnungen mit Hyperfoam-Modell und MARLOW-Modell

Werkstofftechnik
Werkstoffverbunde
Verbundwerkstoffe

U N I K A S S E L V E R S I T 'A' T