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SUMMARY

In the present work the mortar method is applied to planar large deformation contact problems without
friction. In particular, the proposed form of the mortar contact constraints is invariant under translations
and rotations. These invariance properties lay the foundation for the design of energy-momentum time-
stepping schemes for contact–impact problems. The iterative solution procedure is embedded into an active
set algorithm. Lagrange multipliers are used to enforce the mortar contact constraints. The solution of
generalized saddle point systems is circumvented by applying the discrete null space method. Numerical
examples demonstrate the robustness and enhanced numerical stability of the newly developed energy-
momentum scheme. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The present work deals with the development of finite element methods for two-dimensional large
deformation contact problems without friction. In particular, we aim at conserving time-stepping
schemes for contact–impact problems. To achieve this, we make use of the notion of a discrete
gradient in the sense of Gonzalez [1, 2] for the evaluation of the discrete contact forces. In Betsch
and Hesch [3], this approach has been successfully applied to the node-to-segment (NTS) contact
description. The NTS method is currently the prevalent contact formulation in finite element
analysis, see the books by Laursen [4] and Wriggers [5].

However, the NTS method has well-known pitfalls such as the lack of general patch test passage
and robustness issues arising especially in large deformation problems. To remedy the drawbacks of
the NTS method, mortar contact formulations have been devised in recent years, see, for example,
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McDevitt and Laursen [6], Puso and Laursen [7], Hüeber and Wohlmuth [8], Yang et al. [9], Fischer
and Wriggers [10], Brunssen et al. [11], Hartmann et al. [12], and Puso et al. [13]. In contrast to
the collocation-type description of the contact constraints in the NTS method, the mortar approach
relies on an integral formulation of the contact constraints. The weak enforcement of the contact
constraints in the mortar formulation is well suited to cope with the faceted representation of the
contacting surfaces typically arising in the finite element description of deformable-to-deformable
contact problems.

It is now well established that energy-momentum conserving time-stepping schemes and energy-
decaying variants thereof provide enhanced numerical stability for applications in non-linear struc-
tural dynamics and elastodynamics. It is thus not surprising that a lot of research effort has been
spent to extend the energy-momentum approach to coupled problems such as flexible multibody
dynamics (see, for example, Géradin and Cardona [14, Chapter 12] and Leyendecker et al. [15])
and contact–impact problems, see Laursen [4, Chapter 7]. In this connection, it is interesting to
note that conserving time-stepping schemes for large deformation contact–impact problems have
been developed exclusively within the framework of the NTS method, see, for example, Laursen
and Chawla [16], Armero and Petöcz [17], Laursen and Love [18], Hauret and Le Tallec [19] and
Haikal and Hjelmstad [20].

So far energy-momentum schemes for large deformation contact–impact problems have not been
developed within the framework of the mortar method. In a recent paper, Hartmann et al. [12] obtain
algorithmic energy conservation for their mortar contact description by applying the approach
proposed by Laursen and Love [18]. However, similar to all of the above-mentioned works on
mortar contact methods, the semi-discrete contact formulation [12] is not invariant under rotations
and thus algorithmic conservation of angular momentum is not addressed. The lack of rotational
invariance in previous mortar contact approaches can be traced back to simplifying assumptions in
the formulation of the discrete contact forces, as pointed out by Puso and Laursen [7, Section 2.2].
Thus the resulting semi-discrete mortar contact formulations do not inherit conservation of angular
momentum from the underlying continuous description.

An outline of the present work is as follows. After a short summary of the continuous two-
body contact problem (Section 2), we start from a formulation of the mortar contact constraints,
which is invariant under translations and rotations (Section 3). Consequently, conservation of linear
and angular momentum are preserved under discretization. Guided by our previous developments
within the framework of the NTS method (see [3]), Cauchy’s representation theorem is exploited
to recast the mortar contact constraints in terms of quadratic invariants. This paves the way for the
energy-momentum conserving discretization in time (Section 4). The use of Lagrange multipliers
for the enforcement of the mortar contact constraints leads to a generalized saddle point problem
that has to be solved in each step of the iterative solution procedure. The Lagrange multipliers
can be eliminated by applying the discrete null space method (Section 5). In addition to the
size-reduction, this approach yields an improved conditioning (independent of the time-step) of
the algebraic system to be solved. Representative numerical examples are presented in Section 6.
Eventually, conclusions are drawn in Section 7.

2. THE TWO-BODY LARGE DEFORMATION CONTACT PROBLEM

This section provides a short outline of the two-body contact problem under consideration. We
refer to the books by Laursen [4] and Wriggers [5] for more background on the subject.
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1470 C. HESCH AND P. BETSCH

Figure 1. The two-body large deformation contact problem.

We focus our attention on the planar two-body contact problem depicted schematically in
Figure 1. For each body (i), the deformation mapping u(i)(X(i), t) maps material points X(i)

belonging to the reference configuration B(i) ⊂R2 to their current placement at time t . The
boundary �(i) of the reference configuration B(i) is subdivided into the subdomains �(i)

u and �(i)
� ,

where Dirichlet and Neumann boundary conditions are specified, and �(i)
c , where contact may

occur. These subdomains have to satisfy

�(i)
u ∪�(i)

� ∪�(i)
c =�(i) (1)

and

�(i)
u ∩�(i)

� =�(i)
u ∩�(i)

c =�(i)
� ∩�(i)

c =∅ (2)

Contact between the two bodies occurs, if

u(1)(X(1), t)=u(2)(X̄(2), t) (3)

where X̄(2) is the material contact point for X(1) at time t .
To write down the principle of virtual work we first introduce the space of admissible functions as

Q={u(i) :B(i) →R2|u(i) = ū(i) in �(i)
u } (4)

where ū(i) denotes the prescribed displacements. In addition to that, the space of the admissible
variations is given by

V={�u(i) :B(i) →R2|�u(i) =0 in �(i)
u } (5)

For the large deformation two-body contact problem, the principle of virtual work can be expressed
in the form

2∑
i=1

(G(i),dyn+G(i),int−G(i),ext−G(i),c)=0 (6)

Here, the contribution of the inertia terms is given by

G(i),dyn(u(i),�u(i))=
∫
B(i)

�u(i) ·�Rü(i) dV (7)
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where �R is the reference mass density and a superposed dot denotes differentiation with respect
to time. The virtual work arising from the internal forces reads as

G(i),int(u(i),�u(i))=
∫
B(i)

∇(�u(i)) :P(i) dV (8)

where P(i) denotes the first Piola–Kirchhoff stress tensor. Moreover, the virtual work arising from
the external forces is given by

G(i),ext(u(i),�u(i))=
∫
B(i)

�RB
(i) ·�u(i) dV +

∫
�(i)

�

T̄(i) ·�ud� (9)

where B(i) denotes the applied body forces and T̄(i) denotes the prescribed tractions. The virtual
work associated with the contact tractions is given by

Gc=
2∑

i=1
G(i),c (10)

with

G(i),c(u(i),�u(i))=
∫

�(i)
c

�u(i) ·t(i) d� (11)

Here, �(i)
c is the current configuration of �(i)

c and t(i) is the Cauchy contact traction. Performing the
summation in (10) and substituting −t(1) for t(2), we obtain

Gc=
∫

�(1)
c

t(1) ·(�u(1)(X(1), t)−�u(2)(X̄(2), t))d� (12)

In anticipation of the spatial discretization, �(1)
c is called the non-mortar (or slave) side. Similarly,

�(2)
c is referred to as the mortar (or master) side. In the case of frictionless contact only the normal
component of t(1), defined by t(1) ·m(1) =:� is non-zero. In this connection, m(1) is the outward unit
normal to �(1)

c . Accordingly, t(1) =�m(1), so that Equation (12) can be rewritten as

Gc=
∫

�(1)
c

(�m(1))(X(1), t) ·(�u(1)(X(1), t)−�u(2)(X̄(2), t))d� (13)

3. DISCRETIZATION IN SPACE

Concerning the discretization in space we apply displacement-based finite elements [21]. Accord-
ingly, standard polynomial approximations to Q are used, which can be written in the form

u(i),h= ∑
A∈�(i)

N A(X(i))q(i)
A (14)

Here, N A :B(i) →R are global shape functions associated with nodes A∈�(i) ={1, . . . ,n(i)
node}

corresponding to the isoparametric description of B(i). Moreover, q(i)
A (t)=u(i),h(X(i)

A , t) is the

current position vector of the nodal point X(i)
A ∈B(i). In the present work we restrict our attention
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1472 C. HESCH AND P. BETSCH

to planar problems and bi-linear shape functions. The configuration of each semi-discrete flexible
body is characterized by its configuration vector

q(i)(t)=

⎡⎢⎢⎢⎢⎣
q(i)
1 (t)

...

q(i)

n(i)
node

(t)

⎤⎥⎥⎥⎥⎦ (15)

For the two-body contact problem under consideration the configuration of the complete semi-
discrete system is given by

q(t)=
[
q(1)(t)

q(2)(t)

]
(16)

The discretized versions of the deformation gradient and the deformation tensor are given by

F(i),h= �u(i),h

�X(i)
= ∑

A∈�(i)

q(i)
A ⊗∇N A(X(i)) (17)

and

C(i),h= ∑
A,B∈�(i)

q(i)
A ·q(i)

B ∇N A(X(i))⊗∇N B(X(i)) (18)

The discrete counterpart of (7) can be written as

G(i),dyn(u(i),h,�u(i),h)=
∫
B(i)

�u(i),h ·�Rü(i),h dV = ∑
A,B∈�(i)

�q(i)
A ·MAB q̈(i)

B (19)

where the coefficients of the consistent mass matrix

MAB =
∫
B

�RN
AN B dV (20)

have been introduced. Moreover, �q(i)
A denotes the standard variation of the nodal values in (14).

The kinetic energy pertaining to each semi-discrete body assumes the form

T (i) = ∑
A,B∈�(i)

1

2
q̇(i)
A ·MAB q̇(i)

B (21)

Correspondingly, the total kinetic energy of the two-body system under consideration can be
written as

T = 1
2 q̇ ·Mq̇ (22)

where the system velocity vector q̇ follows from differentiating (16) with respect to time, and the
system mass matrix M contains the elements (20), arranged consistently with the partitioning of q
in (16).
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The discrete counterpart of expression (8) for the internal virtual work can be written as

G(i),int(u(i),h,�u(i),h)= ∑
A,B∈�(i)

�q(i)
A ·q(i)

B

∫
B(i)

∇N A(X(i)) ·S(i)∇N B(X(i))dV (23)

where S=2�W/�C denotes the second Piola–Kirchhoff stress tensor and W (C) denotes the stored
energy function. The strain energy of each body can now be written in the form

V (i),int(q(i))=
∫
B(i)

W (C(i),h)dV (24)

Under the assumption that the external virtual work can be derived from a potential energy
function as

V (i),ext(q(i))= ∑
A∈�(i)

q(i)
A ·
(∫

B(i)
N AB(i) dV +

∫
�(i)

�

N AT̄(i) d�

)
(25)

the discrete counterpart of (9) can be written as

G(i),ext(u(i),h,�u(i),h)=∇V (i),ext(q(i)) ·�q(i) (26)

Now the semi-discrete formulation of the two-body system at hand can be associated with a
potential energy function of the form

V (q)=V int(q)+V ext(q)=
2∑

i=1
(V (i),int(q(i))+V (i),ext(q(i))) (27)

Moreover, we can introduce an augmented potential function [3] as
V�(q)=V (q)+ ∑

A∈�̄(1)

�A�A(q) (28)

The last term in the above expression can be viewed as potential function associated with the contact
constraints.‡ In the following, we shall focus on the specific potential function arising from a mortar
contact formulation. In particular, the mortar contact constraints �A(q) will be specified next.

3.1. Mortar contact constraints

In contrast to the collocation-type formulation of the contact constraints in the NTS approach,
the mortar concept relies on the weak enforcement of the contact constraints. Following Puso and
Laursen [7, Section 2], the potential function of the normal contact constraints pertaining to the
mortar method can be derived from an integral form of the contact complementarity condition.
Accordingly,∫

�(1),h
c

(�hmh)(X(1), t) ·(u(1),h(X(1), t)−u(2),h(X̄(2), t))d�=: ∑
A∈�̄(1)

�A�A(q) (29)

‡We do not dwell on constraints due to Dirichlet boundary conditions that can be accommodated in a standard
fashion.
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1474 C. HESCH AND P. BETSCH

Here, the description of the discrete boundaries �(1),h
c and �(2),h

c follows from the space discretiza-
tion. Thus

u(1),h(X(1), t) = ∑
B∈�̄(1)

N B(X(1))q(1)
B (t) for X(1) ∈�(1),h

C (30)

u(2),h(X(2), t) = ∑
C∈�̄(2)

NC (X(2))q(2)
C (t) for X(2) ∈�(2),h

C (31)

where �̄(1) ⊂�(1) and �̄(2) ⊂�(2) denote the set of potential contact nodes lying on �(1),h
c and

�(2),h
c , respectively. The approximation of �h is given by

�h(X(1), t)= ∑
A∈�̄(1)

N A(X(1))�A(t) (32)

where, as in (30), the shape functions N A(X(1)), A∈ �̄(1), are inherited from the non-mortar side.
Inserting Equations (30)–(32) into Equation (29) yields the mortar contact constraints

�A(q) = ∑
B∈�̄(1)

q(1)
B ·
∫

�(1),h
c

mhN A(X(1))N B(X(1))d�

− ∑
C∈�̄(2)

q(2)
C ·

∫
�(1),h
c

mhN A(X(1))NC (X̄(2))d� (33)

Note that the integration in (33) has to be performed across the current contact domain. For that
purpose, a suitable segmentwise procedure will be treated next.

3.2. Elementwise calculation of the mortar contact constraints

To perform the integration along the discrete boundary �(1),h
c , the notion of a contact segment

shall be utilized. Originally, contact segments have been introduced by Simo et al. [22] to take
into account the kinematics of the contact between two discretized bodies. Similar segmentation
procedures have been devised by Papadopoulos and Taylor [23], Zavarise and Wriggers [24],
McDevitt and Laursen [6] and Yang et al. [9].

With regard to the above treatment it is obvious that the individual constraint functions �A(q)

correspond to nodal points lying on the non-mortar side, i.e. A∈ �̄(1). The constraint functions
may be arranged in a vector of constraint functions U(q), such that∑

A∈�̄(1)

�A�A(q)=k·U(q) (34)

The vector of constraint functions can be computed by assembling the contributions of the (one-
dimensional) elements e∈ �̄(1), where �̄(1) denotes the set of elements representing the non-mortar
side �(1),h

c (see Figure 2). In the present case, �(1),h
c corresponds to a polygon composed of two-node

elements e∈ �̄(1).
In the sequel, we shall focus on a representative element e∈ �̄(1) with local node numbers 	=1,2.

The connection between local and global node numbers is stored in the location array LM, such
that A=LM(	,e), for A∈ �̄(1), 	∈{1, 2}, and e∈ �̄(1). Once the element contributions

Ue=
[

�1
e

�2
e

]
(35)
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Figure 2. Representative mortar segment with element boundaries on the discrete
non-mortar side �(1),h

c and mortar side �(2),h
c .

have been computed they can be added to the appropriate location in the vector U. That is,

U= A
e∈�̄(1)

Ue (36)

whereA denotes the standard assembly operator (see, for example, [21]). On the element level,
the evaluation of the integrals in (33) can be accomplished by resorting to the above-mentioned
segmentation procedure. To this end, we consider a representative mortar segment depicted in
Figure 2. The relevant nodal position vectors lying on the boundaries of the two opposing elements
may be collected in the vector

qseg=[q(1)T

1 q(1)T

2 q(2)T

1 q(2)T

2 ]T∈R8 (37)

where local node numbers have been used to denote the position vectors q(1)
1 ,q(1)

2 ∈�(1),h
c and

q(2)
1 ,q(2)

2 ∈�(2),h
c . To each mortar segment there corresponds four coordinates 
(1)

a , 
(1)
b , 
a, and 
(2)

b ,
where 
(1), 
(2) ∈[−1,1] are local coordinates for the parametrization of the element boundaries on
the non-mortar and mortar sides, respectively. For each segment a linear mapping [−1,1]��→
(i)

of the form


(i)(�)= 1
2 (1−�)
(i)

a + 1
2 (1+�)
(i)

b (38)

is introduced. The interpolations (30)–(32) can now be recast in the form

�h(�, t) =
2∑

	=1
N	(
(1)(�))�	(t)

u(1),h(�, t) =
2∑

�=1
N�(
(1)(�))q(1)

� (t) (39)

u(2),h(�, t) =
2∑


=1
N 
(
(2)(�))q(2)


 (t)
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1476 C. HESCH AND P. BETSCH

with local shape functions

N 1(
) = 1
2 (1−
)

N 2(
) = 1
2 (1+
)

(40)

Now, with regard to Equation (33), on the element level we obtain

�	
e =⋃

seg
�	
seg(qseg) (41)

where the segment contributions§ are given by

�	
seg(qseg)=me ·

{
2∑

�=1
n	�,(1)
seg q(1)

� −
2∑


=1
n	
,(2)
seg q(2)




}
(42)

In the last equation the mortar integrals assume the form

n	�,(1)
seg =

∫ 1

−1
N	(
(1)(�))N�(
(1)(�)) jseg d�

n	
,(2)
seg =

∫ 1

−1
N	(
(1)(�))N 
(
(2)(�)) jseg d�

(43)

where d�= jseg d�, with

jseg=
∥∥∥∥∥�u(1),h

�
(1)

�
(1)

��

∥∥∥∥∥ (44)

Note that, depending on the segmentation procedure, all segment contributions relevant to the
element e∈ �̄(1) have to be taken into account, cf. Equation (41). Moreover, a constant unit outward
normal me has been employed for each e∈ �̄(1). This is slightly different from the use of a nodally
averaged normal in Puso and Laursen [7]. We further remark that, for the semi-discrete system
under consideration, the virtual work expression (12) can be written as

Gc,h = �q·
{ ∑

A∈�̄(1)

�A∇�A(q)

}

= �q·{DUT(q)k} (45)

Here, the term in the curly brackets corresponds to the vector of nodal contact forces. Taking into
account the elementwise description outlined above, the last equation can also be written as

Gc,h= ∑
e∈�̄(1)

(⋃
seg

�qseg ·DUT
seg(qseg)

)
ke (46)

§Note that each segment seg is always associated with a specific element e. However, to avoid notational clumsiness,
we refrain from using the notation sege.
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where

ke=
[

�e1

�e2

]
(47)

with �e	 =�A for A=LM(	,e). It is worth noting that in previous works on mortar contact formu-
lations (see [7, 9, 12, 13]) additional simplifying assumptions are commonly incorporated into
the contact virtual work. These simplifications typically sacrifice conservation of the angular
momentum.

In contrast to these works we retain all the configuration-dependent terms in the virtual work
expression (46). Consequently, important conservation properties such as conservation of the
angular momentum are preserved by the present finite element approximation in space. Moreover,
in the purely static case, consistent linearization yields a symmetric tangent operator.

3.3. Mortar contact constraints and conservation of momentum maps

In this section we present a reparametrization of the mortar contact constraints in terms of quadratic
invariants. The advocated reparametrization allows the design of an energy-momentum scheme. In
addition to that, it verifies that the present space discretization inherits conservation of the linear
and angular momentum from the underlying continuous formulation.

3.3.1. Conservation of the linear and angular momentum. Provided that there are no Dirichlet
boundary conditions and no external forces, possible contact interactions between the two-body
system do not change the total linear and angular momentum of the system. One way to verify
these fundamental features of the continuous system is to choose appropriate substitutions for the
variations �u(i) in the virtual work (see, for example, Laursen [4, Section 7.2.1]). In the present
work, we focus on the contact virtual work. Accordingly, substituting �u(i) =n, where n∈R3 is
constant,¶ into expression (12) for the contact virtual work yields

2∑
i=1

G(i),c(u(i),n)=0 (48)

This result allows conservation of the total linear momentum. Similarly, substitution of �u(i) =
n×u(i) yields

2∑
i=1

G(i),c(u(i),n×u(i))=0 (49)

which allows conservation of the total angular momentum.
If conservation of the linear and angular momentum is to be preserved under discretization,

discrete analogues of (48) and (49) have to hold. Similar to the continuous case outlined above,

¶Since the present work focuses on planar problems, we identify R2 with the orthogonal complement of the canonical
basis vector e3 in R3. Similarly, in the sequel, a rotation matrix on R2 will be taken to be one whose extension to
R3 is proper orthogonal and leaves e3 unchanged.
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1478 C. HESCH AND P. BETSCH

these analogues can be obtained by inserting into (46) appropriate nodal patterns for �qseg, where
�qseg is given by (37). Accordingly, satisfaction of the relationship

∑
e∈�̄(1)

(⋃
seg

[nT nT nT nT]DUT
seg(qseg)

)
ke

!=0 (50)

is required for conservation of the total linear momentum, whereas fulfillment of the condition

∑
e∈�̄(1)

(⋃
seg

[(n×q(1)
1 )T (n×q(1)

2 )T (n×q(2)
1 )T (n×q(2)

2 )T]DUT
seg(qseg)

)
ke

!=0 (51)

allows conservation of the total angular momentum of the semi-discrete system.

3.3.2. Conservation laws and invariance properties. According to Noether’s theorem conserva-
tion laws are related to invariance properties of the system. For the semi-discrete system under
consideration, conservation of the linear and angular momentum can be linked to the invariance
of the augmented potential function (28) under translations and rotations, respectively. In partic-
ular, conditions (50) and (51) are automatically satisfied if the mortar contact constraints are
invariant under translations and rotations, respectively. With regard to the relationships (36), (35)
and (41), it suffices to consider in the sequel the segment contributions Useg(qseg)∈R2 specified
by (42).

(i) Translational invariance of the mortar constraints implies that

Useg(q
(1)
1 +εn,q(1)

2 +εn,q(2)
1 +εn,q(2)

2 +εn)=Useg(q
(1)
1 ,q(1)

2 ,q(2)
1 ,q(2)

2 ) (52)

for arbitrary ε∈R. Accordingly,

0= d

dε

∣∣∣∣
ε=0
Useg(q

(1)
1 +εn,q(1)

2 +εn,q(2)
1 +εn,q(2)

2 +εn)

= DUseg(qseg)

⎡⎢⎢⎢⎢⎢⎣
n

n

n

n

⎤⎥⎥⎥⎥⎥⎦ (53)

Thus, provided thatUseg(qseg) is invariant under translations, condition (50) is automatically
fulfilled.

(ii) Rotational invariance of the mortar constraints implies that

Useg(exp(ε̂n)q
(1)
1 ,exp(ε̂n)q(1)

2 ,exp(ε̂n)q(2)
1 ,exp(ε̂n)q(2)

2 )

=Useg(q
(1)
1 ,q(1)

2 ,q(2)
1 ,q(2)

2 ) (54)
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Here, the exponential map exp(ε̂n) represents a rotation matrix on R2. Now

0= d

dε

∣∣∣∣
ε=0
Useg(exp(ε̂n)q

(1)
1 ,exp(ε̂n)q(1)

2 ,exp(ε̂n)q(2)
1 ,exp(ε̂n)q(2)

2 )

= DUseg(qseg)

⎡⎢⎢⎢⎢⎢⎢⎣
n×q(1)

1

n×q(1)
2

n×q(2)
1

n×q(2)
2

⎤⎥⎥⎥⎥⎥⎥⎦ (55)

so that invariance of Useg(qseg) under rotations implies satisfaction of condition (51).

3.3.3. Mortar contact constraints in terms of invariants. We next show that the mortar contact
constraints (42) can be recast in terms of specific invariants. This automatically ensures that
the above invariance properties (i) and (ii) are satisfied. To devise appropriate invariants we
resort to Cauchy’s representation theorem (see Truesdell and Noll [25, Section 11] or Antman
[26, Chapter 8]). Accordingly, if a scalar-valued function

�(qseg)=�(q(1)
1 ,q(1)

2 ,q(2)
1 ,q(2)

2 ) (56)

is invariant under the proper orthogonal group, then it depends only on the set of quadratic invariants
I(qseg)=S(qseg)∪T(qseg), where

S(qseg) = {y	 ·y�,1�	���2,y	 ∈{q(1)
	 ,q(2)

	 }}
T(qseg) = {det([y	,y�]),1�	���2,y	 ∈{q(1)

	 ,q(2)
	 }}

(57)

We now seek for reparametrizations of the mortar contact constraints (42) of the form

�	
seg(qseg)= �̃

	
seg(p(qseg)) (58)

for 	=1,2. Here, p(qseg)=[�1(qseg), . . . ,�d(qseg)]T is the vector of relevant invariants. With regard
to Cauchy’s representation theorem the components �i (qseg), i=1, . . . ,d , have to be composed
of quadratic invariants specified by I(qseg). In addition to that, with regard to (52), translational
invariance requires that the invariants also satisfy the condition

�i (q
(1)
1 +n,q(1)

2 +n,q(2)
1 +n,q(2)

2 +n)=�i (q
(1)
1 ,q(1)

2 ,q(2)
1 ,q(2)

2 ) (59)

As indicated in Figure 2, the filled circles correspond to nodal points, whereas the hollow circles
are associated with orthogonal projections. Accordingly,


(1)
a = 2(q(1)

2 −q(1)
1 ) ·(q(2)

1 −q(1)
1 )

‖q(1)
2 −q(1)

1 ‖2
−1, 
(1)

b =1


(2)
b = (2q(1)

2 −q(2)
1 −q(2)

2 ) ·(q(1)
2 −q(1)

1 )

(q(2)
2 −q(2)

1 ) ·(q(1)
2 −q(1)

1 )
, 
(2)

a =−1

(60)
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Upon introduction of the three quadratic invariants

�1(qseg) = (q(1)
2 −q(1)

1 ) ·(q(1)
2 −q(1)

1 )

�2(qseg) = (q(1)
2 −q(1)

1 ) ·(q(2)
1 −q(1)

1 ) (61)

�3(qseg) = (q(1)
2 −q(1)

1 ) ·(q(2)
2 −q(1)

1 )

the quantities in (60) may be recast in the form


̃
(1)
a = 2�2

�1
−1, 
̃

(1)
b =1


̃
(2)
b = 2�1−�3−�2

�3−�2
, 
̃

(2)
a =−1

(62)

Accordingly, (38) can be alternatively written as


̃
(i) = 1

2 (1−�)
̃
(i)
a + 1

2 (1+�)
̃
(i)
b (63)

For the sake of completeness, we recast the formulation of 
̃
(1)
b and 
̃

(2)
a , presuming that they are

also associated with orthogonal projections


(1)
b = 2(q(1)

2 −q(1)
1 ) ·(q(2)

2 −q(1)
1 )

‖q(1)
2 −q(1)

1 ‖2
−1


(2)
a = (2q(1)

1 −q(2)
1 −q(2)

2 ) ·(q(1)
2 −q(1)

1 )

(q(2)
2 −q(2)

1 ) ·(q(1)
2 −q(1)

1 )

(64)

Employing the invariants (61) yields


̃
(1)
b = 2�3

�1
−1 and 
̃

(2)
a = −�3−�2

�3−�2
(65)

Now, for 	=1, the segment contribution (42) is given by

�1
seg=me ·{n11,(1)seg q(1)

1 +n12,(1)seg q(1)
2 −(n11,(2)seg q(2)

1 +n12,(2)seg q(2)
2 )} (66)

Making use of (43) together with (40) and (63), the last equation yields

�1
seg(qseg) = 1

4
me ·
{
(q(1)

1 +q(1)
2 −q(2)

1 −q(2)
2 )

∫
�segc

d�

+(−2q(1)
1 +q(2)

1 +q(2)
2 )

∫
�segc


̃
(1)

d�+(q(2)
1 −q(2)

2 )

∫
�segc


̃
(2)

d�

−(q(2)
1 −q(2)

2 )

∫
�segc


̃
(1)


̃
(2)

d�− (q(1)
2 −q(1)

1 )

∫
�segc

(
̃
(1)

)2 d�

}
(67)
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In the present case, the tangent vector

�u(1)h

��
= 1

4
(q(1)

2 −q(1)
1 )(
̃

(1)
b − 
̃

(1)
a ) (68)

does not depend on �. In this connection, use has been made of (39)2, (40) and (63). Accordingly,
the unit normal vector me can be written as

me=−K(q(1)
2 −q(1)

1 )/‖q(1)
2 −q(1)

1 ‖ (69)

with the constant matrix

K=
[

0 1
−1 0

]
(70)

Note that KT=K−1=−K and K2=−I2. Let two additional quadratic invariants be defined as

�4(qseg) = (q(1)
2 −q(1)

1 ) ·K(−2q(1)
1 +q(2)

1 +q(2)
2 )

�5(qseg) = (q(1)
2 −q(1)

1 ) ·K(q(2)
1 −q(2)

2 )
(71)

Employing the invariants (61) and (71), and taking into account the skew-symmetry of K as well
as the relationship

d�= 1
4‖q(1)

2 −q(1)
1 ‖(
̃(1)

b − 
̃
(1)
a )d� (72)

which is consistent with (68), a straightforward calculation shows that constraint function (67) can
be recast as

�̃
1
seg(p(qseg))=

1

16
(
̃

(1)
b − 
̃

(1)
a )

{
�4

∫ 1

−1
(
̃

(1)−1)d�+�5

∫ 1

−1
(
̃

(2)− 
̃
(1)


̃
(2)

)d�

}
(73)

Note that, with regard to (62) and (63), the evaluation of the integrals in (73) can be easily
accomplished. For 	=2, the segment contribution (42) can be calculated along the same lines as
before for 	=1 and yields

�̃
2
seg(p(qseg))=

1

16
(
̃

(1)
b − 
̃

(1)
a )

{
�5

∫ 1

−1
(
̃

(2)+ 
̃
(1)


̃
(2)

)d�−�4

∫ 1

−1
(
̃

(1)+1)d�

}
(74)

It is easy to see that the invariants in (61) depend on S. Moreover, since a ·Kb=det([a,b]) for
any a,b∈R2, the invariants in (71) depend on T. Accordingly, rotational invariance is satisfied by
design. Furthermore, the proposed invariants �i (i=1, . . . ,5) fulfill condition (58) as well, which
guarantees translational invariance.

In summary, the present reparametrization of the original mortar contact constraints (42) relies
on a total of d=5 quadratic invariants specified in (61) and (71). Specifically, with regard to (58),
(73), and (74) we get the final result

�̃
	
seg(p(qseg))=

1

8
(
̃

(1)
b − 
̃

(1)
a )

{
�5

∫ 1

−1

̃
(2)

N	(
̃
(1)

)d�−�4

∫ 1

−1
N	(
̃

(1)
)d�

}
(75)

(	=1,2), where use has been made of the shape functions (40) .
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It is worth mentioning that the present reparametrization of the mortar contact constraints turned
out to be beneficial to the computer implementation. In particular, the linearization of the mortar
contact constraints in terms of the invariants has proven to be more manageable than the original
version. Similar observations have been made within the framework of the NTS method, see Betsch
and Hesch [3]. We refer to Appendix A for an outline of the linearization procedure.

3.3.4. Karush–Kuhn–Tucker conditions. According to the above exposition, the mortar contact
constraints are associated with non-mortar nodes A∈�̄(1). Specifically, the mortar contact constraints
�A follow from the assembly of the element contributions

�	
e =⋃

seg
�̃

	
seg(p(qseg)), A=LM(	,e) (76)

as described in Sections 3.2 and 3.3. In the discrete contact problem the Karush–Kuhn–Tucker
(KKT) conditions

�A�0; �A�0; �A�A=0 (77)

have to be satisfied. These conditions separate the set of potential contact nodes �̄(1) into an active
set A and an inactive set I, such that �̄(1) =A∪I and A∩I=∅.

4. DISCRETIZATION IN TIME

The equations of motion pertaining to the semi-discrete two-body system under consideration can
be written as

q̇ = v

Mv̇ = −∇V (q)+ ∑
A∈�̄(1)

�A∇�A(q)
(78)

supplemented with the KKT conditions (77). For the purpose of time integration, we treat the
equations of motion as differential-algebraic equations (DAEs). In this connection, the active set
of contact constraints A has to be consistent with the KKT conditions (see Section 4.3 for further
details). Concerning the time discretization of the DAEs we apply a specific energy-momentum
scheme, the design of which has been outlined in Betsch and Hesch [3, Section 3]. Accordingly,
we arrive at the following one-step method:

qn+1−qn = �t

2
(vn+vn+1)

M(vn+1−vn) = −�t∇V (qn,qn+1)−�t
∑
A∈A

�A,n+1∇�A(qn,qn+1) (79)

0= �A(qn+1), A∈A

Here, (•)n and (•)n+1 denote the approximations of the corresponding function at time tn and
tn+1, respectively, �t= tn+1− tn is the time-step, and ∇ stands for a discrete gradient. Specifically,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:1468–1500
DOI: 10.1002/nme



A MORTAR METHOD FOR ENERGY-MOMENTUM CONSERVING SCHEMES 1483

the discrete gradient of the constraint function �A(q) follows from the assembly of the element
contributions

∇�	
e =⋃

seg
Dp(qseg,n+ 1

2
)T∇ �̃

	
seg(p(qseg,n),p(qseg,n+1)) (80)

for A=LM(	,e), where

∇ �̃
	
seg(pn,pn+1)=∇�̃

	
seg(pn+ 1

2
)+

�̃
	
seg(pn+1)−�̃

	
seg(pn)−∇�̃

	
seg(pn+ 1

2
) ·�p

‖�p‖2 �p (81)

In this connection, the abbreviations pn =p(qseg,n), pn+1=p(qseg,n+1), �p=pn+1−pn , and
(•)n+1/2=((•)n+(•)n+1)/2 have been employed.

4.1. Algorithmic conservation of momentum maps

The application of the discrete gradient (80) in the calculation of the algorithmic constraint forces
enables conservation of the linear and angular momentum. In essence, these conservation properties
are due to the use of the quadratic invariants in (80). Specifically, in complete analogy to the
time-continuous case dealt with in Section 3.3, the following relationships are satisfied in the fully
discrete setting:

DUseg(qseg,n+ 1
2
)

⎡⎢⎢⎢⎢⎣
n

n

n

n

⎤⎥⎥⎥⎥⎦=0 (82)

and

DUseg(qseg,n+ 1
2
)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n×q(1)
1,n+ 1

2

n×q(1)
2,n+ 1

2

n×q(2)
1,n+ 1

2

n×q(2)
2,n+ 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=0 (83)

Equation (82) can be regarded as a discrete counterpart of (53), and allows algorithmic conservation
of the total linear momentum. Similarly, Equation (83) can be viewed as a discrete counterpart of
(55), and enables algorithmic conservation of the total angular momentum.

4.2. Conservation of energy

For frictionless contact problems the net contact power input to the system is zero (see Laursen
[4, Section 7.2.1]). This feature allows conservation of the system’s total energy.

Assume that �u(i) = u̇(i) are feasible variations (cf. Section 3.3). Substituting �u(i) = u̇(i) into
expression (12) for the continuous representation of the contact virtual work yields the total power
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input of the contact stresses

Pcon :=
2∑

i=1
G(i),c(u(i), u̇(i)) (84)

Conservation of energy implies Pcon=0. Similarly, for the semi-discrete system, substituting
�q= q̇ into (45) yields

Pcon,h = q̇ ·
{ ∑

A∈�̄(1)

�A∇�A(q)

}

= ∑
A∈�̄(1)

�A�̇
A

(85)

Consequently, Pcon,h=0, if the space-discrete persistency condition �A�̇
A=0 is satisfied for

A∈ �̄(1). Note that, with regard to (46), Pcon,h can also be written in the form

Pcon,h= ∑
e∈�̄(1)

(⋃
seg

q̇seg ·DUT
seg(qseg)

)
ke (86)

4.2.1. Algorithmic conservation of energy. In the fully discrete setting algorithmic energy conser-
vation is facilitated by the use of the discrete gradient (80), provided that a discrete version of the
aforementioned persistency condition holds. Specifically, the discrete counterpart of Pcon,h can be
written as

P̃
con,h = 1

�t

∑
A∈A

�A,n+1∇�A(qn,qn+1) ·(qn+1−qn)

= 1

�t

∑
A∈A

�A,n+1(�
A(qn+1)−�A(qn)) (87)

The last equality holds since, with regard to (86), (80), and (81),

(qseg,n+1−qseg,n) ·Dp(qseg,n+ 1
2
)T∇ �̃

	
seg(pn,pn+1)

=(pn+1−pn) ·∇ �̃
	
seg(pn,pn+1)= �̃

	
seg(pn+1)−�̃

	
seg(pn) (88)

and, since both �A(qn+1) and �A(qn) result from the assembly of the element contributions

�	
e,n+1=⋃

seg
�̃

	
seg(pn+1) and �	

e,n =⋃
seg

�̃
	
seg(pn) (89)

for A=LM(	,e). Accordingly, algorithmic conservation of energy is facilitated if the discrete
persistency condition

�A,n+1(�
A(qn+1)−�A(qn))=0 (90)

is fulfilled.
Note, however, that the discrete persistency condition is not satisfied in general. For example,

in the case of impact problems, the active set A generally changes from tn to tn+1. Therefore,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:1468–1500
DOI: 10.1002/nme



A MORTAR METHOD FOR ENERGY-MOMENTUM CONSERVING SCHEMES 1485

a previously inactive constraint �A may be detected active at tn+1. In general, this constraint is
not satisfied at tn and thus the discrete consistency condition is violated. In the event of such an
inconsistency we replace the original constraint function in (79)3 according to

�A(qn+1)→�A(qn+1)−�A(qn) (91)

so that condition (90) is still satisfied. This approach can be viewed as modification of the
configuration manifold specified by the active contact constraints. It is worth noting that the
present modification for maintaining algorithmic energy conservation does not affect algorithmic
conservation of the linear and angular momentum.

Concerning the application of the discrete gradient to the potential energy function in (79)2 we
choose

∇V (qn,qn+1)=∇V int(qn,qn+1)+∇V ext(qn+ 1
2
) (92)

where use has been made of (27). Here, ∇V int stands for the application of a discrete gradient to the
stored energy function. In this connection, the components of the discrete deformation tensor play
the role of quadratic invariants (see Betsch and Hesch [3, Section 3.4]). For St. Venant–Kirchhoff
material this approach boils down to the use of an averaged strain tensor as originally proposed
by Simo and Tarnow [27], see also Laursen [4, Remark 7.2].

4.3. Implementation

We next deal with the numerical implementation of the algebraic problem emanating from the
scheme (79). To account for the contact conditions we make use of an active set strategy proposed
by Hüeber and Wohlmuth [8], see also Hartmann et al. [12] and the references cited in these
works. Substituting for vn+1 from (79)1 into (79)2, yields the non-linear system of equations

R(qn+1, [�A,n+1]) :=
[

Rq

[�A]

]
=0, A∈A (93)

where

Rq = 2

�t
M(qn+1−qn)−2Mvn+�t∇V (qn,qn+1)+�t

∑
A∈A

�A,n+1∇�A(qn,qn+1) (94)

Once the system (93) has been solved for qn+1 and �A,n+1, A∈A, the unknown velocities can
be computed via

vn+1= 2

�t
(qn+1−qn)−vn (95)

The solution of the non-linear system of equations (93) is embedded into an active set algorithm
that can be summarized as follows:

(1) Choose an initial subdivision of the set of potential contact constraints �̄(1) into an active
set A1 and an inactive set I1, such that �̄(1) =A1∪I1 and A1∩I1=∅, and set k=1.

(2) Solve the non-linear system of equations (93) for qn+1 and �A,n+1 for A∈Ak ; �A,n+1=0
for A∈Ik .
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(3) Update the sets Ak and Ik according to

Ak+1 = {A∈ �̄(1) :�A,n+1+c�A(qn+1)>0}
Ik+1 = {A∈ �̄(1) :�A,n+1+c�A(qn+1)�0}

(for some c>0), and repeat the procedure with new iteration counter k+1 until the sets
remain unchanged.

To solve the non-linear system in step (2) we apply Newton’s method. The linearization of (93)
leads to the following generalized saddle point system that has to be solved in each Newton
iteration: [

N G̃
T

G 0

][
�q

�k̃

]
=−

[
Rq

R�

]
(96)

where

N = D1Rq(qn+1,kn+1), G=DU(qn+1), G̃=D2Rq(qn+1,kn+1)
T

R� =U(qn+1), �k̃=�t�k

Although the above saddle point system could be directly solved, we advocate a reformulation of
(96), which fits into the framework of the discrete null space method.

5. DISCRETE NULL SPACE METHOD

The direct discretization of the DAEs governing the motion of constrained mechanical systems
necessitates the solution of saddle point systems of the form (96). In this context, the discrete null
space method has been developed by the second author [28] to achieve a size-reduction along with
an improved conditioning of the system to be solved. Our approach can be linked to null space
methods often used in optimization, cf. Benzi et al. [29, Section 6].

Let n be the number of redundant coordinates and m be the number of constraints. We start
with the introduction of a change of coordinates

�q=U�u (97)

with �u∈Rn and a non-singular transformation matrix U∈Rn×n . Next, split �u into independent
coordinates �uI∈Rn−m and dependent coordinates �uD∈Rm , such that

�u=
[

�uI

�uD

]
(98)

and, correspondingly, U=[UI, UD]. In this connection, we require that the m×m matrix G̃UD is
invertible. Making use of the above coordinate partitioning, (97) can be recast in the form

�q=UI�uI+UD�uD (99)
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Premultiplying the first row in (96) by UT yields

UT
I N�q+UT

I G̃
T
�k̃= −UT

I Rq (100)

UT
DN�q+UT

DG̃
T
�k̃= −UT

DRq (101)

The second of the above equations gives rise to

�k̃=−(G̃UD)−TUT
D[Rq +N�q] (102)

Substituting the last equation into (100) leads to

P̃TN�q=−P̃TRq (103)

where the n×(n−m) matrix

P̃ :=(In−UD(G̃UD)−1G̃)UI (104)

can be identified as a discrete null space matrix (cf. Betsch [28, Section 3.2.1]). Note that, by
design, P̃ spans the null space of the discrete constraint Jacobian G̃. Consequently, G̃P̃=0. Now
the generalized saddle point system (96) can be solved by applying two successive steps. First
solve [

P̃TN

G

]
�q=−

[
P̃TRq

R�

]
(105)

for �q∈Rn . Then (102) can be used to determine �k∈Rm . Table I contains a summary of the
solution procedure, which is embedded into the active set strategy as outlined in Section 4.3.

5.1. Alternative solution of the reduced system

We next outline a further reformulation of the system to be solved that retains the symmetry in
case the underlying saddle point system (96) is symmetric, e.g. for equilibrium problems. The
size-reduced system (105) may be solved alternatively by making use of the generalized coordinate
partitioning (99) again. To this end, the second row in (105) may be written as

GUI�uI+GUD�uD=−R� (106)

so that

�uD=−(GUD)−1[R�+GUI�uI] (107)

Now the first row in (105), in conjunction with (99) and (107), can be recast in the form

P̃TNP�uI=−P̃T[Rq −NUD(GUD)−1R�] (108)

where

P :=(In−UD(GUD)−1G)UI (109)
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Table I. Solution procedure for one representative time-step.

(1) Subdivide the set of all possible contact constraints �̄(1) into the set of active constraints
Ak and the set of inactive constraints Ik , such that �̄(1) =Ak ∪Ik and Ak ∩Ik =∅,
and set k=1 for initialization.

(2) Find qn+1∈Rn and kA,n+1=[�A,n+1] for A∈Ak (�A,n+1=0 for A∈Ik ), set the
iteration index l=1.

(2.1) Given q(l)
n+1 and k(l)n+1, calculate the residual vector

R(l) =
⎡⎣Rq (q(l)

n+1,k
(l)
n+1)

R�(q
(l)
n+1)

⎤⎦
and check for convergence, i.e. check whether ‖R(l)‖<�, where � is a prescribed
tolerance.

(2.2) If convergence has not been attained, calculate the discrete null space matrix

P̃(l) =(In−U(l)
D (G̃

(l)
U(l)
D )−1G̃

(l)
)U(l)

I

and solve the algebraic system of linear equations⎡⎣P̃(l)TN (l)

G(l)

⎤⎦�q=−
⎡⎣P̃(l)TR(l)

q

R(l)
�

⎤⎦
Now, determine �k via

�k=− 1

�t
(G̃

(l)
U(l)
D )−TU(l)T

D [R(l)
q +N (l)�q]

(2.3) Update the unknowns according to

q(l+1)
n+1 = q(l)

n+1+�q

k(l+1)
n+1 = k(l)n+1+�k

and repeat the procedure with new iteration counter l+1 until convergence.

(3) Update the sets Ak and Ik according to

Ak+1 = {A∈�̄(1) :�A,n+1+c�A(qn+1)>0}

Ik+1 = {A∈�̄(1) :�A,n+1+c�A(qn+1)�0}
(for some c>0), and repeat the procedure with new iteration counter k+1 until the sets
remain unchanged.
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The solution of (105) is given by

�q=UI�uI+UD�uD (110)

where �uI∈Rn−m can be obtained from (108) and �uD∈Rm from (107). In essence, the imple-
mentation of this approach is contained in [28, Table 3]. It is worth noting that the staggered
solution for �uI and �uD corresponds to the application of forward substitution to the block lower
triangular system [

P̃TNP 0

GUI GUD

][
�uI

�uD

]
=−

[
P̃TRq

R�

]
(111)

Premultiplying Equation (111) by [
In−m (GUI)

T

0 (GUD)T

]
(112)

yields {[
P̃TNP 0

0 0

]
+(G̃U)TGU

}[
�uI

�uD

]
=−

[
P̃TRq

0

]
−(G̃U)TR� (113)

It can be easily verified by a straightforward calculation, that (113) can be written in the alternative
form

{P̃T
UTNUP+(G̃U)TGU}

[
�uI

�uD

]
=−P̃T

UTRq −(G̃U)TR� (114)

with

P̃ :=In−W̃G̃U, W̃=
[
0(n−m)×m

(G̃UD)−1

]
(115)

and

P :=In−WGU, W=
[
0(n−m)×m

(GUD)−1

]
(116)

We finally remark that the described procedure for solving the underlying saddle point system (96)
is closely related to previous works by Krause and Wohlmuth [30, Section 3] and Ainsworth [31]
dealing with the solution of symmetric saddle point systems.

5.2. Application to contact problems

The application of the discrete null space method to the contact problems under consideration rests
on the design of a viable discrete null space matrix (104). To this end, the matrices UI and UD
resulting from a suitable coordinate partitioning of the form (98) have to be devised.
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Figure 3. Node-to-segment contact element.

5.2.1. NTS contact element. We first illustrate our approach with the NTS method dealt with in
Betsch and Hesch [3, Section 3.5]. Accordingly, consider a representative NTS contact element
(Figure 3) with the vector of relevant nodal coordinates

q=
⎡⎢⎣
xS

y1

y2

⎤⎥⎦ (117)

Note that to each slave node xS, there is associated one constraint of impenetrability. We now
perform the decomposition

�xS=s�uS,I+m�uS,D (118)

where, on the master side, the unit tangent and normal vectors are defined by

s = (y2−y1)/‖y2−y1‖
m = −Ks (119)

and K is given by (70). According to (118), the displacement of the slave node uS,D in normal
direction has been chosen as dependent coordinate. Now, for the NTS element under consideration,
the partitioning (99) can be written as

�q=UI�uI+UD�uD (120)

where

�uI=
⎡⎢⎣

�uS,I

�y1

�y2

⎤⎥⎦ , �uD=�uS,D (121)

and

UI=
⎡⎢⎣
s 0 0

0 I2 0

0 0 I2

⎤⎥⎦ , UD=
⎡⎢⎣
m

0

0

⎤⎥⎦ (122)

Since the constraint Jacobian pertaining to the NTS element is given by (cf. Betsch and Hesch
[3, Equation (71)])

G=[mT −N 1mT −N 2mT] (123)
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we obtain

GUD=m·m=1 (124)

Accordingly, in the static case, Equation (104) for the null space matrix (which is identical to
(109) in the case of equilibrium problems) can be evaluated in a straightforward way, taking into
account that, due to property (124), GUD coincides with the m×m identity matrix. Thus, (104)
gives the null space matrix

P=(In−UDG)UI (125)

where the n×m matrix UD follows from the assembly of the matrices UD pertaining to the
respective slave node. The n×(n−m) matrix UI can be viewed as modification of the identity
matrix resulting from the contributions UI of the slave nodes, given by (122). It is worth remarking
that recently Muñoz [32] proposed an alternative way to set up a null space matrix for the NTS
method based on a global parametrization of the master surface in terms of cubic B-splines. Yet
another related approach can be found in Chow et al. [33].

For transient problems, in (104), G̃ contains the contributions of the discrete constraint gradient
associated with each slave node, ∇q�S(qn,qn+1) (cf. Betsch and Hesch [3, Equation (75)]). In
this case we choose

UI=
⎡⎢⎣
s 0 0

0 I2 0

0 0 I2

⎤⎥⎦ , UD=
⎡⎢⎣
m

0

0

⎤⎥⎦ (126)

where

m=U/‖U‖, s=Km, U=∇xS�S(qn,qn+1) (127)

Similar to the static case, property (124) holds again. Consequently, analogous to (125), the discrete
null space matrix assumes the form

P̃=(In−UDG̃)UI (128)

where, as before, UI and UD are associated with the slave node contributions (126).

5.2.2. Mortar contact description. Guided by our previous developments in the context of the
NTS method, we choose the nodes on the non-mortar side to perform a decomposition similar
to (118). Accordingly, consider the position vector q(1)

A on the non-mortar side (i.e. A∈ �̄(1)) and
perform the split

�q(1)
A =s(1)A �u(1)

A,I+m(1)A �u(1)
A,D (129)

where

mA=UA/‖UA‖, sA=KmA, UA=∇q(1)
A

�A(qn,qn+1) (130)
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Taking into account the structure of the system configuration vector (16), the above decomposition
gives rise to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�q(1)
1

...

�q(1)
A

...

�q(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2

. . .

s(1)A

. . .

I
2n(2)

node

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

UI,A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�q(1)
1

...

�u(1)
A,I

...

�q(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

m(1)A

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸
UD,A

�u(1)
A,D (131)

The assembly of the column matrices UD,A yields the n×m matrix UD. Note that, by design, the
diagonal elements of the m×m matrix G̃UD are equal to 1. However, in contrast to the NTS method
treated above, G̃UD does not coincide with the identity matrix anymore. Due to the structure of
the mortar contact constraints, G̃UD has at most three non-zero elements per row. With regard to
(104), the discrete null space matrix is given by

P̃=(In−UD(G̃UD)−1G̃)UI (132)

where UI is an n×(n−m) matrix, which results from the n×n identity matrix by replacing the
2×2 block identity matrices on the diagonal with column vectors s(1)A (cf. Equation (131)).

6. NUMERICAL EXAMPLES

6.1. Persistent contact problem

The first numerical example presented herein consists of the planar model of a bearing depicted in
Figure 4. A similar example dealing with two concentric rings has been presented by Belytschko
et al. [34] to investigate the performance of a specific smoothing algorithm.

The bearing consists of two rings (Young’s modulus E=105, Poisson ratio �=0.1 and mass
density �R=0.001), which are discretized by four-node isoparametric displacement-based plain
strain elements. The discretization of the outer ring relies on 10×48 elements, for the inner ring
10×40 have been used (Figure 4). Note that this implies that the two meshes do not conform in
the initial configuration.

The motion of the inner ring is restricted by the condition of persistent contact with the outer
ring. Pure Dirichlet-type conditions are applied to fix the outer boundary of the outer ring. To get a
pre-stressed initial configuration of the whole bearing, a static equilibrium problem is solved first.
To this end, the initial outer diameter of the inner ring,‖ di=80.1, exceeds the initial inner diameter
of the outer ring,∗∗ do=80.0. Accordingly, the static equilibrium problem consists of enforcing

‖The inner diameter is 50.
∗∗The outer diameter is 100.
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Figure 4. Initial configuration of the bearing.

(frictionless) contact between the inner and the outer ring. The static equilibrium problem is solved
in one load increment.

After the solution of the equilibrium problem the transient calculation proceeds with �t=0.01.
To start the rotation, a torque

T (t)=2500 f (t) with f (t)=
{
sin(2�t) for 0�t�0,5

0 for 0,5<t�2
(133)

is acting on the inner ring. To this end, external forces are applied in tangential direction to the
nodes on the inner boundary of the inner ring. Then, for t ∈(0.5,2], no external loads are acting
on the bearing anymore.

Figure 6 shows that for t�0.5 the present scheme does indeed conserve the total energy for
the frictionless contact problem under consideration. In addition to that, Figure 5 corroborates
algorithmic conservation of the angular momentum.

It is quite remarkable that, despite the rough resolution of the contact surface in the present
example, the mortar contact method, in conjunction with the energy-momentum scheme, produces
astonishingly smooth results. This is in severe contrast to the NTS approach in Belytschko et al.
[34], which, even with smoothing, requires the application of integrators with numerical dissipation.

6.2. Impact problem

The second numerical example deals with the impact of two elastic rings. Similar examples have
been previously considered by Wriggers et al. [35] and Laursen and Love [18]. This example is
especially well suited to check the algorithmic conservation properties.
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Figure 5. Total angular momentum versus time.
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Figure 6. Energy versus time.

For the discretization of each initially circular ring, 64 isoparametric displacement-based bi-
linear finite elements have been used. The material behavior of both rings is assumed to be governed
by the St. Venant–Kirchhoff material model with Young’s modulus E=100 and Poisson ratio
�=0.1. The mass density of both rings is �R=0.001. The two rings move toward each other with
an initial velocity of v0=10.

In the simulations documented below a time-step of �t=0.01 has been used. To illustrate,
the simulated motion snapshots of the two rings at successive points in time are depicted in
Figure 7. After the initial free-flight phase contact takes place within the time interval of approxi-
mately [6, 16].

Since no external forces/torques act on the present two-body system the total linear momentum
as well as the total angular momentum are conserved quantities. These momenta are indeed
conserved by the proposed algorithm, see Figure 8 where the total angular momentum is displayed.
Furthermore, algorithmic conservation of the total energy can be observed from Figure 9.
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Figure 7. Snapshots of the motion.
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Figure 8. Total angular momentum versus time.

Table II contains a comparison of the maximum condition number of the iteration matrix for
both solution schemes under consideration, namely solution of the original saddle point system or
application of the discrete null space method as described in Section 5. It can be observed that
application of the discrete null space method yields a condition number, which is independent
of the time-step. In contrast to that, the condition number of the original saddle point system
deteriorates if the time-step is decreased.

We finally remark that for the present impact example the results furnished by the mortar
contact formulation are practically indistinguishable from those of the NTS method presented in
Betsch and Hesch [3]. In both cases the proposed energy-momentum scheme exhibits remarkable
numerical stability properties.
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Figure 9. Energy versus time.

Table II. Comparison of the condition number of the iteration matrix.

�t Saddle point problem Discrete nullspace method

10−1 72 5.8×103

10−2 2.6×102 1.3×103

10−3 5.7×104 1.5×103

10−4 5.2×107 1.5×103

10−5 5.2×1010 1.5×103

7. CONCLUSIONS

In this work, we have presented a new formulation of mortar contact constraints in terms of
quadratic invariants. Our approach has been guided by our previous developments in the context of
the NTS method presented in Betsch and Hesch [3]. Accordingly, our main aim was the design
of an energy-momentum scheme by applying the notion of a discrete gradient to the evaluation
of the discrete contact forces. This approach requires a specific formulation of the mortar contact
constraints, which is invariant under both translations and rotations. Indeed, the description of the
mortar contact constraints in terms of the invariants presented in Section 3 verifies the desired
invariance properties of the semi-discrete formulation. To the best of our knowledge, the present
approach yields the first mortar contact formulation that inherits rotational invariance from the
underlying continuous formulation.

The aforementioned invariance properties of the semi-discrete contact description lay the foun-
dation for the energy-momentum scheme presented in Section 4. The mortar contact formulation
combined with the conserving time discretization leads to a numerical method that exhibits remark-
able stability and robustness properties. In fact, the numerical example presented in Section 6.1
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indicates that the present approach is a substantial improvement on the classical NTS method,
even if smoothing techniques are applied.

The proposed implementation relies on an iterative solution procedure embedded into an active
set algorithm. Owing to the use of Lagrange multipliers for the enforcement of the mortar contact
constraints, in each Newton iteration a saddle point system has to be solved. To obtain a size-
reduction along with an improved conditioning of the system to be solved the discrete null space
method has been applied (Section 5). If the underlying saddle point system is symmetric, e.g.
in the case of static equilibrium problems, the symmetry can be retained in the size-reduced
system (Section 5.1). Similar to previously developed energy-momentum schemes, the present
time discretization yields an unsymmetric iteration matrix. Accordingly, in the case of transient
problems, a generalized saddle point system has to be solved. In addition to the elimination of the
Lagrange multipliers, the discrete null space method yields an iteration matrix whose condition
number is independent of the time-step. That is, the conditioning does not deteriorate if the
time-step is decreased.

The developments presented herein are restricted to the planar case and space discretiza-
tions relying on linear finite elements. However, the extension to the three-dimensional setting
and higher-order finite elements should be possible. Rotational invariance of the mortar contact
constraints along with conservation of the angular momentum are probably even more crucial in
three-dimensional applications. Furthermore, friction effects play an important role in practical
applications and should be included in future work. It is expected that conserving schemes provide
a good basis for the inclusion of friction effects, facilitating the development of energy-consistent
schemes.

APPENDIX A: LINEARIZATION OF THE MORTAR CONTACT CONSTRAINTS

In this appendix we outline the linearization of the discrete contact forces. In particular, we focus
on the element contributions to the discrete gradient given by (80). For simplicity of exposition
set q̃=qseg, so that (80) can be written as

∇�	
e =⋃

seg
Dp(q̃n+ 1

2
)T∇ �̃

	
seg(pn,pn+1)

=⋃
seg

5∑
i=1

∇�i (q̃n+ 1
2
)∇�i �̃

	
seg(pn,pn+1)

=⋃
seg

gseg(q̃n, q̃n+1) (A1)

The linearization of the segment contributions in (A1)3 may be written as

�gseg=Kseg�q̃n+1 (A2)

where the 8×8 matrix Kseg is given by

Kseg = Dp(q̃n+ 1
2
)T

�
�pn+1

(∇ �̃
	
seg(pn,pn+1))Dp(q̃n+1)

+1

2

5∑
i=1

∇�i �̃
	
seg(pn,pn+1)∇2�i (q̃n+ 1

2
) (A3)
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Since the invariants �i (q̃), i=1, . . . ,5 are quadratic, the associated Hessians ∇2�i (q̃) are constant.
In particular, with regard to the definition of the invariants in (61) and (71), we obtain

∇�1(q̃) =

⎡⎢⎢⎢⎢⎣
−2a

2a

0

0

⎤⎥⎥⎥⎥⎦ , ∇�2(q̃)=

⎡⎢⎢⎢⎢⎢⎣
−a−(q(2)

1 −q(1)
1 )

(q(2)
1 −q(1)

1 )

a

0

⎤⎥⎥⎥⎥⎥⎦ , ∇�3(q̃)=

⎡⎢⎢⎢⎢⎢⎣
−a−(q(2)

2 −q(1)
1 )

(q(2)
2 −q(1)

1 )

0

a

⎤⎥⎥⎥⎥⎥⎦

∇�4(q̃) =

⎡⎢⎢⎢⎢⎢⎢⎣
K(−2a−2q(1)

1 +q(2)
1 +q(2)

2 )

K(−2q(1)
1 +q(2)

1 +q(2)
2 )

−Ka
−Ka

⎤⎥⎥⎥⎥⎥⎥⎦ , ∇�5(q̃)=

⎡⎢⎢⎢⎢⎢⎣
K(q(2)

1 −q(2)
2 )

−K(q(2)
1 −q(2)

2 )

Ka

−Ka

⎤⎥⎥⎥⎥⎥⎦

(A4)

where the abbreviation a=q(1)
2 −q(1)

1 has been used. Furthermore,

∇2�1(q̃) =

⎡⎢⎢⎢⎢⎣
2I −2I 0 0

−2I 2I 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

∇2�2(q̃) =

⎡⎢⎢⎢⎢⎣
I 0 −I 0

−I 0 I 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
I −I 0 0

0 0 0 0

−I I 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

∇2�3(q̃) =

⎡⎢⎢⎢⎢⎣
I 0 0 −I

−I 0 0 I

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
I −I 0 0

0 0 0 0

0 0 0 0

−I I 0 0

⎤⎥⎥⎥⎥⎦ (A5)

∇2�4(q̃) =

⎡⎢⎢⎢⎢⎣
2K 0 −K −K

−2K 0 K K

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
2K −2K 0 0

0 0 0 0

−K K 0 0

−K K 0 0

⎤⎥⎥⎥⎥⎦
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∇2�5(q̃) =

⎡⎢⎢⎢⎢⎣
0 0 K −K
0 0 −K K

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

K −K 0 0

−K K 0 0

⎤⎥⎥⎥⎥⎦
where I and 0 denote the 2×2 identity and zero matrix, respectively. It remains to determine the

5×5 matrix �(∇ �̃
	
seg)/�pn+1 in (A3). This is a tedious but straightforward calculation starting

from the discrete derivative of the constraints defined by (81).
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