Home | english  | Impressum | Sitemap | KIT
Bild Peter Betsch

Prof. Dr.-Ing. habil. Peter Betsch

Sprechstunden:

nach Vereinbarung
(Anmeldung Zi. 212 oder per E-Mail)


Raum: 210
Tel.: +49 721 608-42072
Fax: +49 721 608-47990
Peter BetschUuo2∂kit edu

Institut für Mechanik
Karlsruher Institut für Technologie (KIT)

Geb. 10.30
Otto-Ammann-Platz 9
D-76131 Karlsruhe


Selected Publications

Betsch, P.: Energy-momentum integrators for elastic Cosserat points, ridig bodies and multibody systems. In: Structure-preserving integrators in nonlinear structural dynamics and multibody dynamics, Series: CISM Courses and Lectures, Betsch, P. (Ed.), Vol. 565 (31-89), Springer Verlag, 2016

Bauchau, O., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody System Dynamics 37(1), 29-48, 2016, DOI

Betsch, P., Altmann, R., Yang, Y.: Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints. Multibody Dynamics: Computational Methods and Applications, Series: Computational Methods in Applied Sciences, Vol. 42, 1-18, Font-Llagunes, J.M (Ed.), Springer Verlag, 2016, DOI

Betsch, P., Janz, A.: An energy-momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells. Int. J. Numer. Meth. Engng, published online, 2016, DOI

Krüger, M., Groß, M., Betsch, P.: An energy-entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. Z. Angew. Math. Mech. (ZAMM) 96(2), 141-178, 2016, DOI 

Conde Martín, S., Betsch, P., García Orden, J.C.: A temperature-based thermodynamically consistent integration scheme for discrete thermo-elastodynamics. Commun. Nonlinear Sci. Numer. Simulat., Vol. 32 (63-80), 2016, DOI

Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody System Dynamics 36(3), 295-321, 2016, DOI

Roller, M., Betsch, P., Gallrein, A. and Linn, J.: On the Use of Geometrically Exact Shells for Dynamic Tyre Simulation. In: Multibody Dynamics: Computational Methods and Applications, Series: Computational Methods in Applied Sciences, Terze, Z. (Ed.), Vol. 35 (205-236), Springer Verlag, 2014, Springer Webpage

Becker, C. and Betsch, P.: Application of a gyrostatic rigid body formulation in the context of a direct transcription method for optimal control in multibody dynamics. In: Multibody Dynamics: Computational Methods and Applications, Series: Computational Methods in Applied Sciences, Terze, Z. (Ed.), Vol. 35 (237-254), Springer Verlag, 2014, Springer Webpage 

Eugster, S.R., Hesch, C., Betsch, P. and Glocker, Ch.: Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates, Int. J. Numer. Meth. Engng 97(2), 111-129, 2014, DOI

Sinclair, A.J., Hurtado, J.E., Berinato, C., Betsch, P.: On Noether's theorem and the various integrals of the damped linear oscillator. J. of Astronaut. Sci. (2013), Vol. 60 (396-407), DOI

Hesch, C., Betsch, P.: Continuum mechanical considerations for rigid bodies and fluid-structure interaction problems, Archive of Mechanical Engineering, 2013, DOI, PDF

Franke, M., Hesch, C. and Betsch, P.: An augmentation technique for large deformation frictional contact problems, Int. J. Numer. Meth. Engng 94(5), 513-534, 2013, DOI

Betsch, P. and Sänger, N.: On the consistent formulation of torques in a rotationless framework for multibody dynamics, Computers and Structures 127, 29-38, 2013, DOI

Hesch, C. and Betsch, P.: Isogeometric analysis and domain decomposition methods, Comput. Methods Appl. Mech. Engng, 213-216: 104-112, 2012, DOI

Betsch, P., Siebert, R., and Sänger, N.: Natural coordinates in the optimal control of multibody systems, J. Comput. Nonlinear Dynam., 7(1):011009/1-011009/8, 2012, DOI

Groß, M. and Betsch, P.: Galerkin-based energy-momentum consistent time-stepping algorithms for classical nonlinear thermo-elastodynamics, Mathematics and Computers in Simulation, 82(4):718-770, 2011, DOI

Hesch, C., and Betsch, P.: Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration, Computational Mechanics, 48(4):461-475, 2011, DOI

Hesch, C., and Betsch, P.: Transient 3d contact problems--NTS method: mixed methods and conserving integration, Computational Mechanics, 48(4):437-449, 2011, DOI

Krüger, M., Groß, M., and Betsch, P.: A comparison of structure-preserving integrators for discrete thermoelastic systems, Computational Mechanics, 47(6):701–722, 2011, DOI

Hesch, C., and Betsch, P.: Energy-momentum consistent algorithms for dynamic thermomechanical problems – application to mortar domain decomposition problems, Int. J. Numer. Meth. Engng, 86(11):1277–1302, 2011, DOI

Hesch, C., and Betsch, P.: Transient three-dimensional domain decomposition problems: Frame-indifferent mortar constraints and conserving integration, Int. J. Numer. Meth. Engng 82(3), 329–358, 2010, DOI

Groß, M., and Betsch, P.: Energy-momentum consistent finite element discretization of dynamic finite viscoelasticity, Int. J. Numer. Meth. Engng 81(11), 1341–1386, 2010, DOI

Uhlar, S., and Betsch, P.: On the derivation of energy consistent time stepping schemes for friction afflicted multibody systems, Computers and Structures 88(11-12), 737–754, 2010, DOI

Betsch, P., Hesch, C., Sänger, N., and Uhlar, S.: Variational integrators and energy-momentum schemes for flexible multibody dynamics, J. Comput. Nonlinear Dynam. 5(3), 031001/1–031001/11, 2010, DOI

Betsch, P., and Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration, Int. J. Numer. Meth. Engng 79(4), 444–473, 2009, DOI

Betsch, P., and Sänger, N.: On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics, Comput. Methods Appl. Mech. Engrg. 198, 1609–1630, 2009, DOI

Hesch, C., and Betsch, P.: A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems, Int. J. Numer. Meth. Engng 77(10), 1468–1500, 2009, DOI

Uhlar, S., and Betsch, P.: A rotationless formulation of multibody dynamics: Modeling of screw joints and incorporation of control constraints, Multibody System Dynamics 22(1), 69–95, 2009, DOI

Betsch, P., and Sänger, N.: A nonlinear finite element framework for flexible multibody dynamics: Rotationless formulation and energy-momentum conserving discretization, Multibody Dynamics: Computational Methods and Applications, volume 12, Springer-Verlag, 119–141, Eds: Bottasso, Carlo L., 2009

Uhlar, S., and Betsch, P.: Conserving Integrators for Parallel Manipulators, Parallel Manipulators, I-Tech Education and Publishing, www.books.i-techonline.com, 75–108, Eds: Ryu, J.-H., Vienna, Austria, 2008

Leyendecker, S., Betsch, P., and Steinmann, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics, Multibody System Dynamics 19(1-2), 45–72, 2008, DOI

Betsch, P., and Hesch, C.: Energy-momentum conserving schemes for frictionless dynamic contact problems. Part I: NTS method, IUTAM Symposium on Computational Methods in Contact Mechanics, volume 3, Springer-Verlag, 77–96, Eds: Wriggers, P., and Nackenhorst, U., 2007, DOI

Betsch, P., and Uhlar, S.: Energy-momentum conserving integration of multibody dynamics, Multibody System Dynamics 17(4), 243–289, 2007, DOI

Hesch, C., and Betsch, P.: A comparison of computational methods for large deformation contact problems of flexible bodies, Z. Angew. Math. Mech. (ZAMM) 86(10), 818–827, 2006, DOI

Leyendecker, S., Betsch, P., and Steinmann, P.: Objective energy-momentum conserving integration for the constrained dynamics of geometrically exact beams, Comput. Methods Appl. Mech. Engrg. 195, 2313–2333, 2006, DOI

Betsch, P.: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints, Comput. Methods Appl. Mech. Engrg. 195, 7020–7035, 2006, DOI

Betsch, P., and Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics, Int. J. Numer. Meth. Engng 67(4), 499–552, 2006, DOI

Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints, Comput. Methods Appl. Mech. Engrg. 194(50-52), 5159–5190, 2005, DOI

Groß, M., Betsch, P., and Steinmann, P.: Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes, Int. J. Numer. Meth. Engng 63, 1849–1897, 2005, DOI

Betsch, P.: A unified approach to the energy-consistent numerical integration of nonholonomic mechanical systems and flexible multibody dynamics, GAMM Mitteilungen 27(1), 66–87, 2004,

Leyendecker, S., Betsch, P., and Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems - a comparison of approaches, Computational Mechanics 33(3), 174–185, 2004, DOI

Betsch, P., and Steinmann, P.: Constrained dynamics of geometrically exact beams, Computational Mechanics 31, 49–59, 2003, DOI

Betsch, P.: Computational Methods for Flexible Multibody Dynamics, Habilitationsschrift, Lehrstuhl für Technische Mechanik, Universität Kaiserslautern, 2002,

Betsch, P., and Steinmann, P.: Conservation Properties of a Time FE Method. Part III: Mechanical systems with holonomic constraints, Int. J. Numer. Meth. Engng 53, 2271–2304, 2002, DOI

Betsch, P., and Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory, Int. J. Numer. Meth. Engng 54, 1775–1788, 2002, DOI

Betsch, P., and Steinmann, P.: A DAE approach to flexible multibody dynamics, Multibody System Dynamics 8, 367–391, 2002, DOI

Betsch, P., and Steinmann, P.: Constrained Integration of Rigid Body Dynamics, Comput. Methods Appl. Mech. Engrg. 191, 467–488, 2001, DOI

Betsch, P., and Steinmann, P.: Conservation Properties of a Time FE Method. Part II: Time-Stepping Schemes for Nonlinear Elastodynamics, Int. J. Numer. Meth. Engng 50, 1931–1955, 2001, DOI

Betsch, P., and Steinmann, P.: Derivation of the Fourth-Order Tangent Operator Based on a Generalized Eigenvalue Problem, Int. J. Solids Structures 37, 1615–1628, 2000, DOI

Betsch, P., and Steinmann, P.: Inherently Energy Conserving Time Finite Elements for Classical Mechanics, Journal of Computational Physics 160, 88–116, 2000, DOI

Betsch, P., and Steinmann, P.: Conservation Properties of a Time FE Method. Part I: Time-Stepping Schemes for N-Body Problems, Int. J. Numer. Meth. Engng 49, 599–638, 2000, DOI

Steinmann, P., and Betsch, P.: A Localization Capturing FE-Interface Based on Regularized Strong Discontinuities at Large Inelastic Strains, Int. J. Solids Structures 37, 4061–4082, 2000, DOI

Betsch, P., and Stein, E.: Numerical Implementation of Multiplicative Elasto-Plasticity into Assumed Strain Elements with Application to Shells at Large Strains, Comput. Methods Appl. Mech. Engrg. 179, 215–245, 1999, DOI

Betsch, P., Menzel, A., and Stein, E.: On the Parametrization of Finite Rotations in Computational Mechanics. A Classification of Concepts with Application to Smooth Shells, Comput. Methods Appl. Mech. Engrg. 155, 273–305, 1998, DOI

Steinmann, P., Betsch, P., and Stein, E.: FE Plane Stress Analysis Incorporating Arbitrary 3D Large Strain Constitutive Models, Eng. Comput. 14, 175–201, 1997, DOI

Betsch, P.: Statische und dynamische Berechnungen von Schalen endlicher elastischer Deformationen mit gemischten Finiten Elementen, Dissertation, Bericht-Nr. F 96/4, Institut für Baumechanik und Numerische Mechanik der Universität Hannover, 1996

Betsch, P., Gruttmann, F., and Stein, E.: A 4-Node Finite Shell Element for the Implementation of General Hyperelastic 3D-Elasticity at Finite Strains, Comput. Methods Appl. Mech. Engrg. 130, 57–79, 1996, DOI

Betsch, P., and Stein, E.: A Nonlinear Extensible 4-Node Shell Element Based on Continuum Theory and Assumed Strain Interpolations, J. Nonlinear Sci. 6, 169–199, 1996, DOI

Betsch, P., and Stein, E.: An Assumed Strain Approach Avoiding Artificial Thickness Straining for a Nonlinear 4-Node Shell Element, Commun. Numer. Meth. Engng 11, 899–909, 1995, DOI