Philipp Lothar Kinon, M. Sc.

Philipp Lothar Kinon, M. Sc.

preferred email address: Dear Philipp Kinon

Curriculum Vitae

since Nov. 2021 Research associate, Institute of Mechanics (IFM), KIT, Karlsruhe
Dec. 2020 - May 2021 Master thesis "A Mixed Variational Framework for the Structure‐Preserving Integration of Dynamical Systems with Primary and Secondary Constraints” (Poster)
Apr. 2018 - Sep. 2021

Master program “Engineering Structures”, Profile: Simulation and Modeling, KIT, Karlsruhe

Sep. 2019 - Feb. 2020

Exchange semester, Politecnico di Torino, Turin

Oct. 2017 - Dec. 2017

Bachelor thesis "Theory and Numerical Methods for Transversely Isotropic Materials in Large Strain Electromechanics”

Oct. 2014 - Mar. 2018

Bachelor program “Civil Engineering”, KIT, Karlsruhe

Research Interests

Multibody system dynamics
Structure-preserving numerical methods
Port-Hamiltonian modelling and simulation

Teaching (Exercises)

Strength of Materials (summer term 2024)
Statics of Rigid Bodies (winter term 2023/24)
Finite Elements in Solid Mechanics (summer term 2023)
Basics of Finite Elements (winter term 2022/23)
Computational Structural Dynamics (summer term 2022)
Laboratory Course (winter term 2021/22)
Dynamics of Structures (winter term 2021/22)

Supervised theses (BA, MA)

Schneider, Daniel: Discrete gradient methods for dynamical systems with cyclic coordinates (BA, 2024)

Prandl, Jonas: Vibrations of a guyed mast: Numerical analysis of geometric nonlinearities and energy-conserving time integration (BA, 2023)

Veröffentlichungen

Kinon, P.L., Betsch, P.: Conserving integration of multibody systems with singular and non-constant mass matrix including quaternion-based rigid body dynamics. Multibody System Dynamics, 2024, DOI

Kinon, P.L., Thoma, T., Betsch, P., Kotyczka, P.: Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization. In: Proceedings of LHMNC 2024. Besançon, France, June 10-12, 2024, URL

Kinon, P. L., Betsch, P.: Energy-consistent integration of mechanical systems based on Livens principle. In: Proceedings of the 11th ECCOMAS Thematic Conference on Multibody Dynamics. Lisbon, Portugal, Jul. 24 - 28, 2023, URL, DOI (arXiv)

Kinon, P.L., Thoma, T., Betsch, P., Kotyczka, P.: Discrete nonlinear elastodynamics in a port-Hamiltonian framework. Proceedings in Applied Mathematics and Mechanics, 23, e202300144, 2023, DOI

Kinon, P.L., Thoma, T., Betsch, P., Kotyczka, P.: Port-Hamiltonian formulation and structure-preserving discretization of hyperelastic strings. arXiv:2304.10957 [math.DS], 2023, DOI

Kinon, P.L., Betsch, P., Schneider, S.: Structure-preserving integrators based on a new variational principle for constrained mechanical systems. Nonlinear Dynamics 111, 14231-14261, 2023, DOI

Kinon, P. L., Betsch, P.: Structure-preserving integrators for constrained mechanical systems in the framework of the GGL principle. Proc. Appl. Math. Mech., 22(1), e202200006, 2023, DOI

Kinon, P.L., Betsch, P. , Schneider, S.: The GGL variational principle for constrained mechanical systems. Multibody Syst Dyn 57, 211-236, 2023, DOI

Bauer, J. K., Kinon, P. L., Hund, J., Latussek, L., Meyer, N., Böhlke, T.: Mechkit: A continuum mechanics toolkit in Python. Journal of Open Source Software, 7(78), 4389, 2022, DOI

Kinon, P. L., Betsch, P.: The GGL Variational Principle for Constrained Mechanical Systems. In: Proceedings of the 10th ECCOMAS Thematic Conference on Multibody Dynamics. Budapest, Hungary, Dec. 12 - 15, 2021, pp. 197-211, DOI

Vorträge

Kinon, P. L., Thoma, T., Betsch, P., Kotyczka, P.: Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization. 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control - LHMNC 2024, Besançon, France, June 10-12, 2024 

Kinon, P. L., Betsch, P.: Structure-preserving time discretization of multibody systems with singular inertia matrix. 94th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Magdeburg, Germany, March 18-22, 2024

Kinon, P. L., Betsch, P. : Geometric integration of mechanical systems with singular mass matrix based on a mixed variational principle. GAMM Student Chapter KIT, Karlsruhe, Germany, January 24, 2024

Kinon, P. L. , Betsch, P.: Energy-consistent integration of mechanical systems based on Livens principle. 11th ECCOMAS Thematic Conference on Multibody Dynamics, Lisbon, Portugal, July 24-28, 2023

Kinon, P. L., Thoma, T., Betsch, P., Kotyczka, P.: Nonlinear elastodynamics in the context of port-Hamiltonian modeling: Formulation and structure-preserving discretization. 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics, Dresden, Germany, May 30th - June 2nd, 2023

Kinon, P. L., Thoma, T., Betsch, P., Kotyczka, P.: Modeling and simulation of geometrically exact strings in a nonlinear port-Hamiltonian framework. Third workshop of the doctoral college “Port-Hamiltonian systems: Modelling, numerics and control”, Wuppertal, Germany, March 28-30, 2023

Kinon, P. L. : Eine Einführung in die Port-Hamiltonsche Modellierung mechanischer Systeme. Seminar at the Instiute of Mechanics, Karlsruhe, Germany, February 14, 2023

Kinon, P. L. , Betsch, P.: Structure-preserving Integrators for Constrained Mechanical Systems in the Framework of the GGL Principle. 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, Aachen, Germany, August 15-19, 2022

Kinon, P. L. , Betsch, P.: The GGL Variational Principle for Constrained Mechanical Systems. 10th ECCOMAS Thematic Conference on Multibody Dynamics, Budapest (online), Hungary, December 12-15, 2021

Conferences and courses

IUTAM Symposium on Optimal Design and Control of Multibody Systems: Adjoint Methods, Alternatives and Beyond, TUHH Hamburg University of Technology, Hamburg, Germany, July 18-21, 2022

Energy-Based Modeling, Simulation and Control of Complex Constrained Multiphysical Systems, CIRM Luminy, Marseille, France, April 18-22, 2022